Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182259500> ?p ?o ?g. }
- W3182259500 endingPage "83" @default.
- W3182259500 startingPage "71" @default.
- W3182259500 abstract "With the coming of the “14th Five-Year Plan,” the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5) and O3 has become a major issue of air pollution prevention and control in China. The stereoscopic monitoring of regional PM2.5 and O3 and their precursors is crucial to achieve coordinated control. However, current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM2.5 and O3 simultaneously and support air quality control. The University of Science and Technology of China (USTC) has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) since 2015. This monitoring network provides a significant opportunity for the regional coordinated control of PM2.5 and O3 in China. One-year vertical profiles of aerosol, NO2 and HCHO monitored from four MAX-DOAS stations installed in four megacities (Beijing, Shanghai, Shenzhen, and Chongqing) were used to characterize their vertical distribution differences in four key regions, Jing–Jin–Ji (JJJ), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB), respectively. The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape, respectively, and both show exponential shapes in YRD and SB. The NO2 vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions. The shape of the HCHO vertical profile in JJJ and PRD was Gaussian, whereas an exponential shape was shown in YRD and SB. Moreover, a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain (NCP) by five MAX-DOAS stations (Shijiazhuang (SJZ), Wangdu (WD), Nancheng (NC), Chinese Academy of Meteorological Sciences (CAMS), and University of Chinese Academy of Sciences (UCAS)) belonging to the above network. The aerosol optical depths (AOD) in these five stations decreased in the order of SJZ > WD > NC > CAMS > UCAS. The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC. As an important precursor of secondary aerosol, the peak of NO2 air mass in WD and NC all occurred 1 h earlier than that of aerosol. This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS, which potentially affected the O3 concentration in Beijing. Finally, CAMS was selected as a typical site to determine the O3–NOx–volatile organic compounds (VOCs) sensitivities in vertical space. We found the production of O3 changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NOx-limited condition from the 0–100 m layer to the 200–300 m layer. In addition, the downward transport of O3 could contribute to the increase of ground surface O3 concentration. This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM2.5 and O3 and their precursors and conduct attribution of sources." @default.
- W3182259500 created "2021-07-19" @default.
- W3182259500 creator A5005627824 @default.
- W3182259500 creator A5007985173 @default.
- W3182259500 creator A5040345688 @default.
- W3182259500 creator A5041081583 @default.
- W3182259500 creator A5042026897 @default.
- W3182259500 creator A5044562580 @default.
- W3182259500 creator A5045611682 @default.
- W3182259500 creator A5053794860 @default.
- W3182259500 creator A5062388328 @default.
- W3182259500 creator A5066931842 @default.
- W3182259500 creator A5067260285 @default.
- W3182259500 creator A5067841310 @default.
- W3182259500 creator A5069542053 @default.
- W3182259500 creator A5080330001 @default.
- W3182259500 creator A5081690128 @default.
- W3182259500 creator A5082086115 @default.
- W3182259500 creator A5082398341 @default.
- W3182259500 creator A5090341800 @default.
- W3182259500 date "2022-12-01" @default.
- W3182259500 modified "2023-10-14" @default.
- W3182259500 title "Ground-Based Hyperspectral Stereoscopic Remote Sensing Network: A Promising Strategy to Learn Coordinated Control of O3 and PM2.5 over China" @default.
- W3182259500 cites W1915764634 @default.
- W3182259500 cites W1965078933 @default.
- W3182259500 cites W1965121024 @default.
- W3182259500 cites W1969947600 @default.
- W3182259500 cites W1970378849 @default.
- W3182259500 cites W1970724679 @default.
- W3182259500 cites W1990597129 @default.
- W3182259500 cites W1992006743 @default.
- W3182259500 cites W1996047157 @default.
- W3182259500 cites W2002103857 @default.
- W3182259500 cites W2030222206 @default.
- W3182259500 cites W2032465471 @default.
- W3182259500 cites W2040387404 @default.
- W3182259500 cites W2073933662 @default.
- W3182259500 cites W2078144519 @default.
- W3182259500 cites W2079115768 @default.
- W3182259500 cites W2094532978 @default.
- W3182259500 cites W2106050180 @default.
- W3182259500 cites W2106549035 @default.
- W3182259500 cites W2108274885 @default.
- W3182259500 cites W2109103034 @default.
- W3182259500 cites W2121690346 @default.
- W3182259500 cites W2126858388 @default.
- W3182259500 cites W2145857138 @default.
- W3182259500 cites W2147385407 @default.
- W3182259500 cites W2148351137 @default.
- W3182259500 cites W2152062796 @default.
- W3182259500 cites W2167625506 @default.
- W3182259500 cites W2180352542 @default.
- W3182259500 cites W2302402611 @default.
- W3182259500 cites W2416855820 @default.
- W3182259500 cites W2417541264 @default.
- W3182259500 cites W2505241051 @default.
- W3182259500 cites W2509932026 @default.
- W3182259500 cites W2525548212 @default.
- W3182259500 cites W2626326445 @default.
- W3182259500 cites W2736104522 @default.
- W3182259500 cites W2752368118 @default.
- W3182259500 cites W2765906509 @default.
- W3182259500 cites W2770190883 @default.
- W3182259500 cites W2771475195 @default.
- W3182259500 cites W2781653617 @default.
- W3182259500 cites W2809033725 @default.
- W3182259500 cites W2902259405 @default.
- W3182259500 cites W2909413684 @default.
- W3182259500 cites W2911419204 @default.
- W3182259500 cites W2922530165 @default.
- W3182259500 cites W2933040983 @default.
- W3182259500 cites W2942821563 @default.
- W3182259500 cites W2977978674 @default.
- W3182259500 cites W2981927324 @default.
- W3182259500 cites W2982589558 @default.
- W3182259500 cites W2983844578 @default.
- W3182259500 cites W2987739103 @default.
- W3182259500 cites W2988742225 @default.
- W3182259500 cites W2997581477 @default.
- W3182259500 cites W3012383357 @default.
- W3182259500 cites W3017404467 @default.
- W3182259500 cites W3027631477 @default.
- W3182259500 cites W3035411262 @default.
- W3182259500 cites W3040712775 @default.
- W3182259500 cites W3092994897 @default.
- W3182259500 cites W3096834012 @default.
- W3182259500 doi "https://doi.org/10.1016/j.eng.2021.02.019" @default.
- W3182259500 hasPublicationYear "2022" @default.
- W3182259500 type Work @default.
- W3182259500 sameAs 3182259500 @default.
- W3182259500 citedByCount "15" @default.
- W3182259500 countsByYear W31822595002021 @default.
- W3182259500 countsByYear W31822595002022 @default.
- W3182259500 countsByYear W31822595002023 @default.
- W3182259500 crossrefType "journal-article" @default.
- W3182259500 hasAuthorship W3182259500A5005627824 @default.
- W3182259500 hasAuthorship W3182259500A5007985173 @default.
- W3182259500 hasAuthorship W3182259500A5040345688 @default.