Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182457246> ?p ?o ?g. }
- W3182457246 abstract "Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1 Z-Inspection ® to identify specific challenges and potential ethical trade-offs when we consider AI in practice." @default.
- W3182457246 created "2021-07-19" @default.
- W3182457246 creator A5000641874 @default.
- W3182457246 creator A5004271884 @default.
- W3182457246 creator A5005216969 @default.
- W3182457246 creator A5008080245 @default.
- W3182457246 creator A5009234365 @default.
- W3182457246 creator A5009911041 @default.
- W3182457246 creator A5010006112 @default.
- W3182457246 creator A5012431463 @default.
- W3182457246 creator A5013323158 @default.
- W3182457246 creator A5015645245 @default.
- W3182457246 creator A5016669171 @default.
- W3182457246 creator A5017052411 @default.
- W3182457246 creator A5018786314 @default.
- W3182457246 creator A5019088056 @default.
- W3182457246 creator A5019184582 @default.
- W3182457246 creator A5020410813 @default.
- W3182457246 creator A5025261893 @default.
- W3182457246 creator A5025445240 @default.
- W3182457246 creator A5026593207 @default.
- W3182457246 creator A5028019884 @default.
- W3182457246 creator A5033075709 @default.
- W3182457246 creator A5034493341 @default.
- W3182457246 creator A5037102288 @default.
- W3182457246 creator A5043709502 @default.
- W3182457246 creator A5046736670 @default.
- W3182457246 creator A5051552000 @default.
- W3182457246 creator A5054520530 @default.
- W3182457246 creator A5060969026 @default.
- W3182457246 creator A5066161857 @default.
- W3182457246 creator A5068065965 @default.
- W3182457246 creator A5069143323 @default.
- W3182457246 creator A5071043385 @default.
- W3182457246 creator A5071144214 @default.
- W3182457246 creator A5073816744 @default.
- W3182457246 creator A5075576417 @default.
- W3182457246 creator A5075875150 @default.
- W3182457246 creator A5083693038 @default.
- W3182457246 creator A5086447602 @default.
- W3182457246 creator A5090455372 @default.
- W3182457246 creator A5091307183 @default.
- W3182457246 date "2021-07-08" @default.
- W3182457246 modified "2023-10-03" @default.
- W3182457246 title "On Assessing Trustworthy AI in Healthcare. Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls" @default.
- W3182457246 cites W2042012551 @default.
- W3182457246 cites W2045275857 @default.
- W3182457246 cites W2051026770 @default.
- W3182457246 cites W2061811998 @default.
- W3182457246 cites W2097875399 @default.
- W3182457246 cites W2100983247 @default.
- W3182457246 cites W2102041648 @default.
- W3182457246 cites W2102579295 @default.
- W3182457246 cites W2106664869 @default.
- W3182457246 cites W2112478245 @default.
- W3182457246 cites W2137134322 @default.
- W3182457246 cites W2147800946 @default.
- W3182457246 cites W2155275441 @default.
- W3182457246 cites W2180469576 @default.
- W3182457246 cites W2283450481 @default.
- W3182457246 cites W2297180012 @default.
- W3182457246 cites W2326211812 @default.
- W3182457246 cites W2485480481 @default.
- W3182457246 cites W2521086184 @default.
- W3182457246 cites W2606093263 @default.
- W3182457246 cites W2889390845 @default.
- W3182457246 cites W2889891960 @default.
- W3182457246 cites W2904994748 @default.
- W3182457246 cites W2910432161 @default.
- W3182457246 cites W2914405540 @default.
- W3182457246 cites W2917939217 @default.
- W3182457246 cites W2922510530 @default.
- W3182457246 cites W2963809228 @default.
- W3182457246 cites W2969881216 @default.
- W3182457246 cites W2973105703 @default.
- W3182457246 cites W2977555548 @default.
- W3182457246 cites W2979279941 @default.
- W3182457246 cites W2981869278 @default.
- W3182457246 cites W2991542819 @default.
- W3182457246 cites W3003299879 @default.
- W3182457246 cites W3004053867 @default.
- W3182457246 cites W3006074118 @default.
- W3182457246 cites W3011102739 @default.
- W3182457246 cites W3015161080 @default.
- W3182457246 cites W3016012157 @default.
- W3182457246 cites W3030030520 @default.
- W3182457246 cites W3045297226 @default.
- W3182457246 cites W3084028349 @default.
- W3182457246 cites W3093544118 @default.
- W3182457246 cites W3096120964 @default.
- W3182457246 cites W3107791653 @default.
- W3182457246 cites W3108814473 @default.
- W3182457246 cites W3120294807 @default.
- W3182457246 cites W3156205870 @default.
- W3182457246 cites W4248611638 @default.
- W3182457246 doi "https://doi.org/10.3389/fhumd.2021.673104" @default.
- W3182457246 hasPublicationYear "2021" @default.
- W3182457246 type Work @default.
- W3182457246 sameAs 3182457246 @default.
- W3182457246 citedByCount "11" @default.