Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182490934> ?p ?o ?g. }
- W3182490934 abstract "An innovations sequence of a time series is a sequence of independent and identically distributed random variables with which the original time series has a causal representation. The innovation at a time is statistically independent of the history of the time series. As such, it represents the new information contained at present but not in the past. Because of its simple probability structure, an innovations sequence is the most efficient signature of the original. Unlike the principle or independent component analysis representations, an innovations sequence preserves not only the complete statistical properties but also the temporal order of the original time series. An long-standing open problem is to find a computationally tractable way to extract an innovations sequence of non-Gaussian processes. This paper presents a deep learning approach, referred to as Innovations Autoencoder (IAE), that extracts innovations sequences using a causal convolutional neural network. An application of IAE to the one-class anomalous sequence detection problem with unknown anomaly and anomaly-free models is also presented." @default.
- W3182490934 created "2021-07-19" @default.
- W3182490934 creator A5040523461 @default.
- W3182490934 creator A5044316824 @default.
- W3182490934 date "2021-06-23" @default.
- W3182490934 modified "2023-09-27" @default.
- W3182490934 title "Innovations Autoencoder and its Application in One-class Anomalous Sequence Detection" @default.
- W3182490934 cites W1533423434 @default.
- W3182490934 cites W1553204923 @default.
- W3182490934 cites W1562327244 @default.
- W3182490934 cites W1710476689 @default.
- W3182490934 cites W1884859883 @default.
- W3182490934 cites W1959608418 @default.
- W3182490934 cites W1980245868 @default.
- W3182490934 cites W2019704783 @default.
- W3182490934 cites W2023204099 @default.
- W3182490934 cites W2049628889 @default.
- W3182490934 cites W2058522416 @default.
- W3182490934 cites W2068019718 @default.
- W3182490934 cites W2074722281 @default.
- W3182490934 cites W2096789154 @default.
- W3182490934 cites W2099741732 @default.
- W3182490934 cites W2104648144 @default.
- W3182490934 cites W2105497548 @default.
- W3182490934 cites W2105934661 @default.
- W3182490934 cites W2117671523 @default.
- W3182490934 cites W2142298894 @default.
- W3182490934 cites W2145072343 @default.
- W3182490934 cites W2145490891 @default.
- W3182490934 cites W2155063211 @default.
- W3182490934 cites W2163899311 @default.
- W3182490934 cites W2261625295 @default.
- W3182490934 cites W2431962807 @default.
- W3182490934 cites W2751118800 @default.
- W3182490934 cites W2766527109 @default.
- W3182490934 cites W2769478807 @default.
- W3182490934 cites W2809705434 @default.
- W3182490934 cites W2867167548 @default.
- W3182490934 cites W2895958066 @default.
- W3182490934 cites W2913002991 @default.
- W3182490934 cites W2914570111 @default.
- W3182490934 cites W2933801392 @default.
- W3182490934 cites W2950067852 @default.
- W3182490934 cites W2951883849 @default.
- W3182490934 cites W2952053192 @default.
- W3182490934 cites W2963238274 @default.
- W3182490934 cites W2963384319 @default.
- W3182490934 cites W2963693742 @default.
- W3182490934 cites W2970946347 @default.
- W3182490934 cites W3009830806 @default.
- W3182490934 cites W3015420945 @default.
- W3182490934 cites W3041956526 @default.
- W3182490934 cites W3110968940 @default.
- W3182490934 cites W3111373706 @default.
- W3182490934 cites W3153689598 @default.
- W3182490934 cites W53456558 @default.
- W3182490934 doi "https://doi.org/10.48550/arxiv.2106.12382" @default.
- W3182490934 hasPublicationYear "2021" @default.
- W3182490934 type Work @default.
- W3182490934 sameAs 3182490934 @default.
- W3182490934 citedByCount "0" @default.
- W3182490934 crossrefType "posted-content" @default.
- W3182490934 hasAuthorship W3182490934A5040523461 @default.
- W3182490934 hasAuthorship W3182490934A5044316824 @default.
- W3182490934 hasBestOaLocation W31824909341 @default.
- W3182490934 hasConcept C101738243 @default.
- W3182490934 hasConcept C105795698 @default.
- W3182490934 hasConcept C108583219 @default.
- W3182490934 hasConcept C11413529 @default.
- W3182490934 hasConcept C121332964 @default.
- W3182490934 hasConcept C122123141 @default.
- W3182490934 hasConcept C12997251 @default.
- W3182490934 hasConcept C141513077 @default.
- W3182490934 hasConcept C143724316 @default.
- W3182490934 hasConcept C151730666 @default.
- W3182490934 hasConcept C153180895 @default.
- W3182490934 hasConcept C154945302 @default.
- W3182490934 hasConcept C163716315 @default.
- W3182490934 hasConcept C17744445 @default.
- W3182490934 hasConcept C199539241 @default.
- W3182490934 hasConcept C26873012 @default.
- W3182490934 hasConcept C2776359362 @default.
- W3182490934 hasConcept C2777212361 @default.
- W3182490934 hasConcept C2778112365 @default.
- W3182490934 hasConcept C33923547 @default.
- W3182490934 hasConcept C41008148 @default.
- W3182490934 hasConcept C54355233 @default.
- W3182490934 hasConcept C62520636 @default.
- W3182490934 hasConcept C739882 @default.
- W3182490934 hasConcept C86803240 @default.
- W3182490934 hasConcept C94625758 @default.
- W3182490934 hasConceptScore W3182490934C101738243 @default.
- W3182490934 hasConceptScore W3182490934C105795698 @default.
- W3182490934 hasConceptScore W3182490934C108583219 @default.
- W3182490934 hasConceptScore W3182490934C11413529 @default.
- W3182490934 hasConceptScore W3182490934C121332964 @default.
- W3182490934 hasConceptScore W3182490934C122123141 @default.
- W3182490934 hasConceptScore W3182490934C12997251 @default.
- W3182490934 hasConceptScore W3182490934C141513077 @default.
- W3182490934 hasConceptScore W3182490934C143724316 @default.