Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182537325> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3182537325 endingPage "753" @default.
- W3182537325 startingPage "745" @default.
- W3182537325 abstract "In the real world, the development model of optimization problems tends to be diversified and large scale. Therefore, optimization technologies are facing severe challenges in terms of nonlinearity, multi-dimensionality, intelligence, and dynamic programming. Multiobjective optimization problems have multiple conflicting objective functions, so the unique optimal solution is impossible to obtain when optimizing, and multiple objective values must be considered to obtain a compromise optimal solution set. When traditional optimization methods treat complex multiobjective problems, such as those with nonlinearity and high dimensionality, good optimization results are difficult to ensure or even infeasible. The evolutionary algorithm is a method that simulates the natural evolution process and is optimized via group search technology. It has the characteristics of strong robustness and high search efficiency. Inspired by the foraging behavior of bird flocks in nature, the particle swarm optimization algorithm has a simple implementation, fast convergence, and unique updating mechanism. With its outstanding performance in the single-objective optimization process, particle swarm optimization has been successfully extended to multiobjective optimization, and many breakthrough research achievements have been made in combinatorial optimization and numerical optimization. Consequently, the multiobjective particle swarm algorithm has far-reaching research value in theoretical research and engineering practice. As a meta-heuristic optimization algorithm, particle swarm optimization is widely used to solve multiobjective optimization problems. This paper summarized the advanced strategies of the multiobjective particle swarm optimization algorithm. First, the basic theories of multiobjective optimization and particle swarm optimization were reviewed. Second, the difficult problems involving multiobjective optimization were analyzed. Third, the achievements in recent years were summarized from five aspects: optimal particle selection strategies, diversity maintenance mechanisms, convergence improvement measures, coordination methods between diversity and convergence, and improvement schemes of iterative formulas, parametric and topological structure. Finally, the problems to be solved and the future research direction of the multiobjective particle swarm optimization algorithm were presented." @default.
- W3182537325 created "2021-07-19" @default.
- W3182537325 creator A5001786564 @default.
- W3182537325 creator A5046296367 @default.
- W3182537325 creator A5050500595 @default.
- W3182537325 creator A5083481513 @default.
- W3182537325 date "2021-06-25" @default.
- W3182537325 modified "2023-09-23" @default.
- W3182537325 title "Overview of multiobjective particle swarm optimization algorithm" @default.
- W3182537325 doi "https://doi.org/10.13374/j.issn2095-9389.2020.10.31.001" @default.
- W3182537325 hasPublicationYear "2021" @default.
- W3182537325 type Work @default.
- W3182537325 sameAs 3182537325 @default.
- W3182537325 citedByCount "2" @default.
- W3182537325 countsByYear W31825373252022 @default.
- W3182537325 crossrefType "journal-article" @default.
- W3182537325 hasAuthorship W3182537325A5001786564 @default.
- W3182537325 hasAuthorship W3182537325A5046296367 @default.
- W3182537325 hasAuthorship W3182537325A5050500595 @default.
- W3182537325 hasAuthorship W3182537325A5083481513 @default.
- W3182537325 hasConcept C101219045 @default.
- W3182537325 hasConcept C109718341 @default.
- W3182537325 hasConcept C111030470 @default.
- W3182537325 hasConcept C122357587 @default.
- W3182537325 hasConcept C126255220 @default.
- W3182537325 hasConcept C137836250 @default.
- W3182537325 hasConcept C154945302 @default.
- W3182537325 hasConcept C159149176 @default.
- W3182537325 hasConcept C29282572 @default.
- W3182537325 hasConcept C33923547 @default.
- W3182537325 hasConcept C41008148 @default.
- W3182537325 hasConcept C4935549 @default.
- W3182537325 hasConcept C68781425 @default.
- W3182537325 hasConcept C85617194 @default.
- W3182537325 hasConceptScore W3182537325C101219045 @default.
- W3182537325 hasConceptScore W3182537325C109718341 @default.
- W3182537325 hasConceptScore W3182537325C111030470 @default.
- W3182537325 hasConceptScore W3182537325C122357587 @default.
- W3182537325 hasConceptScore W3182537325C126255220 @default.
- W3182537325 hasConceptScore W3182537325C137836250 @default.
- W3182537325 hasConceptScore W3182537325C154945302 @default.
- W3182537325 hasConceptScore W3182537325C159149176 @default.
- W3182537325 hasConceptScore W3182537325C29282572 @default.
- W3182537325 hasConceptScore W3182537325C33923547 @default.
- W3182537325 hasConceptScore W3182537325C41008148 @default.
- W3182537325 hasConceptScore W3182537325C4935549 @default.
- W3182537325 hasConceptScore W3182537325C68781425 @default.
- W3182537325 hasConceptScore W3182537325C85617194 @default.
- W3182537325 hasIssue "6" @default.
- W3182537325 hasLocation W31825373251 @default.
- W3182537325 hasOpenAccess W3182537325 @default.
- W3182537325 hasPrimaryLocation W31825373251 @default.
- W3182537325 hasRelatedWork W1515044906 @default.
- W3182537325 hasRelatedWork W1536460312 @default.
- W3182537325 hasRelatedWork W1980766827 @default.
- W3182537325 hasRelatedWork W1986373856 @default.
- W3182537325 hasRelatedWork W1997830976 @default.
- W3182537325 hasRelatedWork W2020480762 @default.
- W3182537325 hasRelatedWork W2050946187 @default.
- W3182537325 hasRelatedWork W2063870188 @default.
- W3182537325 hasRelatedWork W2101536899 @default.
- W3182537325 hasRelatedWork W2126211975 @default.
- W3182537325 hasRelatedWork W2136339694 @default.
- W3182537325 hasRelatedWork W2140252032 @default.
- W3182537325 hasRelatedWork W2140269868 @default.
- W3182537325 hasRelatedWork W2156626996 @default.
- W3182537325 hasRelatedWork W2157601049 @default.
- W3182537325 hasRelatedWork W2250683302 @default.
- W3182537325 hasRelatedWork W2253599057 @default.
- W3182537325 hasRelatedWork W2320164960 @default.
- W3182537325 hasRelatedWork W2948225251 @default.
- W3182537325 hasRelatedWork W3128836657 @default.
- W3182537325 hasVolume "43" @default.
- W3182537325 isParatext "false" @default.
- W3182537325 isRetracted "false" @default.
- W3182537325 magId "3182537325" @default.
- W3182537325 workType "article" @default.