Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182616304> ?p ?o ?g. }
- W3182616304 abstract "Abstract Feature selection, a combinatorial optimization problem, remains broadly applied in the area of Computational Learning with the aim to construct a model with reduced features so as to improve the performance of the model. Feature selection algorithm aims to identify admissible subgroup of features without sacrificing the accuracy of the model. This research works uses Improved Binary Particle Swarm Optimization (IBPSO) to optimally identify subset of features. The problem of stagnation, trapping in local optima and premature convergence of Binary Particle Swarm Optimization (BPSO) for solving discrete feature selection dispute has been tackled using IBPSO. IBPSO prevents the model from overfitting and also takes less computational time for constructing the model because of reduced feature subset. The sine function, cosine function, position of the random particle and linear decrement of inertial weight are integrated in IBPSO, which balances between exploration and exploitation to identify optimal subset of features. The linear decrement of inertial weight tends to do good level of exploration at the starting phase, whereas at the end it tends to exploit solution space to find the optimal subset of features that are more informative and thereby discarding redundant and irrelevant features. Experimentation is carried out on seven benchmarking datasets obtained from University of California, Irvine repository, which includes various real-world datasets for processing with machine learning algorithms. The proposed IBPSO is compared with conventional metaheuristic algorithms such as BPSO, Simulated Annealing, Ant Colony Optimization, Genetic Algorithm and other hybrid metaheuristic feature selection algorithms. The result proves that IBPSO maximizes the accuracy of the classifier together with maximum dimensionality reduction ratio. Also, statistical tests such as T-test, Wilcoxon signed-pair test are also carried out to demonstrate IBPSO is better than other algorithms taken for experimentation with confidence level of 0.05." @default.
- W3182616304 created "2021-07-19" @default.
- W3182616304 creator A5034233109 @default.
- W3182616304 creator A5085612999 @default.
- W3182616304 date "2021-07-06" @default.
- W3182616304 modified "2023-10-18" @default.
- W3182616304 title "Accelerating Analytics Using Improved Binary Particle Swarm Optimization for Discrete Feature Selection" @default.
- W3182616304 cites W1500895378 @default.
- W3182616304 cites W1541288193 @default.
- W3182616304 cites W1556640847 @default.
- W3182616304 cites W1974475152 @default.
- W3182616304 cites W1982147649 @default.
- W3182616304 cites W1983380373 @default.
- W3182616304 cites W2003577090 @default.
- W3182616304 cites W2013734290 @default.
- W3182616304 cites W2015832884 @default.
- W3182616304 cites W2037575202 @default.
- W3182616304 cites W2045171284 @default.
- W3182616304 cites W2046357518 @default.
- W3182616304 cites W2050058698 @default.
- W3182616304 cites W2052684427 @default.
- W3182616304 cites W2060030465 @default.
- W3182616304 cites W2060542593 @default.
- W3182616304 cites W2073640212 @default.
- W3182616304 cites W2074388642 @default.
- W3182616304 cites W2100798983 @default.
- W3182616304 cites W2109364787 @default.
- W3182616304 cites W2128193809 @default.
- W3182616304 cites W2132311751 @default.
- W3182616304 cites W2154943049 @default.
- W3182616304 cites W2167101736 @default.
- W3182616304 cites W2183659962 @default.
- W3182616304 cites W2232317135 @default.
- W3182616304 cites W2287654067 @default.
- W3182616304 cites W2406762112 @default.
- W3182616304 cites W2535832105 @default.
- W3182616304 cites W2551011523 @default.
- W3182616304 cites W2554382158 @default.
- W3182616304 cites W2604105233 @default.
- W3182616304 cites W2604226975 @default.
- W3182616304 cites W2605902561 @default.
- W3182616304 cites W2612473079 @default.
- W3182616304 cites W2625020867 @default.
- W3182616304 cites W2735994428 @default.
- W3182616304 cites W2753434909 @default.
- W3182616304 cites W2754840697 @default.
- W3182616304 cites W2767768852 @default.
- W3182616304 cites W2774064330 @default.
- W3182616304 cites W2776226778 @default.
- W3182616304 cites W2790009831 @default.
- W3182616304 cites W2791471386 @default.
- W3182616304 cites W2794316962 @default.
- W3182616304 cites W2801572136 @default.
- W3182616304 cites W2885790982 @default.
- W3182616304 cites W2895277873 @default.
- W3182616304 cites W2897129967 @default.
- W3182616304 cites W2898991205 @default.
- W3182616304 doi "https://doi.org/10.1093/comjnl/bxab089" @default.
- W3182616304 hasPublicationYear "2021" @default.
- W3182616304 type Work @default.
- W3182616304 sameAs 3182616304 @default.
- W3182616304 citedByCount "0" @default.
- W3182616304 crossrefType "journal-article" @default.
- W3182616304 hasAuthorship W3182616304A5034233109 @default.
- W3182616304 hasAuthorship W3182616304A5085612999 @default.
- W3182616304 hasConcept C109718341 @default.
- W3182616304 hasConcept C11413529 @default.
- W3182616304 hasConcept C119857082 @default.
- W3182616304 hasConcept C122357587 @default.
- W3182616304 hasConcept C126255220 @default.
- W3182616304 hasConcept C126980161 @default.
- W3182616304 hasConcept C138885662 @default.
- W3182616304 hasConcept C141934464 @default.
- W3182616304 hasConcept C148483581 @default.
- W3182616304 hasConcept C154945302 @default.
- W3182616304 hasConcept C176066374 @default.
- W3182616304 hasConcept C2776401178 @default.
- W3182616304 hasConcept C28767586 @default.
- W3182616304 hasConcept C33923547 @default.
- W3182616304 hasConcept C41008148 @default.
- W3182616304 hasConcept C41895202 @default.
- W3182616304 hasConcept C85617194 @default.
- W3182616304 hasConcept C8880873 @default.
- W3182616304 hasConceptScore W3182616304C109718341 @default.
- W3182616304 hasConceptScore W3182616304C11413529 @default.
- W3182616304 hasConceptScore W3182616304C119857082 @default.
- W3182616304 hasConceptScore W3182616304C122357587 @default.
- W3182616304 hasConceptScore W3182616304C126255220 @default.
- W3182616304 hasConceptScore W3182616304C126980161 @default.
- W3182616304 hasConceptScore W3182616304C138885662 @default.
- W3182616304 hasConceptScore W3182616304C141934464 @default.
- W3182616304 hasConceptScore W3182616304C148483581 @default.
- W3182616304 hasConceptScore W3182616304C154945302 @default.
- W3182616304 hasConceptScore W3182616304C176066374 @default.
- W3182616304 hasConceptScore W3182616304C2776401178 @default.
- W3182616304 hasConceptScore W3182616304C28767586 @default.
- W3182616304 hasConceptScore W3182616304C33923547 @default.
- W3182616304 hasConceptScore W3182616304C41008148 @default.
- W3182616304 hasConceptScore W3182616304C41895202 @default.
- W3182616304 hasConceptScore W3182616304C85617194 @default.