Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182636149> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3182636149 endingPage "23" @default.
- W3182636149 startingPage "1" @default.
- W3182636149 abstract "In this article, two parameter estimator and two parameter predictor are defined via the penalized log-likelihood approach in linear mixed models. The recommended approach is quite useful when there is a strong linear relationship among the variables of fixed effects design matrix. The necessary and sufficient condition for the superiority of the two parameter predictor over the best linear unbiased predictor of linear combinations of fixed and random effects in the sense of matrix mean square error criterion is examined. Additionally, to enhance the practical utility of the two parameter estimator and the two parameter predictor, we focus on the selection issue of two biasing parameters. Thus, 10 different methods for choosing the unknown biasing parameters are offered. Two real data sets are analysed to test the performance of our new two parameter approach. In addition, a comprehensive Monte Carlo simulation is performed." @default.
- W3182636149 created "2021-07-19" @default.
- W3182636149 creator A5086561835 @default.
- W3182636149 creator A5089212834 @default.
- W3182636149 date "2021-07-01" @default.
- W3182636149 modified "2023-09-23" @default.
- W3182636149 title "Improving prediction by means of a two parameter approach in linear mixed models" @default.
- W3182636149 cites W1492075988 @default.
- W3182636149 cites W1981317281 @default.
- W3182636149 cites W1982585616 @default.
- W3182636149 cites W1993849755 @default.
- W3182636149 cites W1999187230 @default.
- W3182636149 cites W2006837711 @default.
- W3182636149 cites W2020364685 @default.
- W3182636149 cites W2023245001 @default.
- W3182636149 cites W2053515525 @default.
- W3182636149 cites W2066796151 @default.
- W3182636149 cites W2073334899 @default.
- W3182636149 cites W2082246284 @default.
- W3182636149 cites W2106342186 @default.
- W3182636149 cites W2152204294 @default.
- W3182636149 cites W2157291679 @default.
- W3182636149 cites W2314246804 @default.
- W3182636149 cites W2325014228 @default.
- W3182636149 cites W2546709389 @default.
- W3182636149 cites W2783439741 @default.
- W3182636149 cites W2907314085 @default.
- W3182636149 cites W2976185913 @default.
- W3182636149 cites W4211177544 @default.
- W3182636149 doi "https://doi.org/10.1080/00949655.2021.1946540" @default.
- W3182636149 hasPublicationYear "2021" @default.
- W3182636149 type Work @default.
- W3182636149 sameAs 3182636149 @default.
- W3182636149 citedByCount "0" @default.
- W3182636149 crossrefType "journal-article" @default.
- W3182636149 hasAuthorship W3182636149A5086561835 @default.
- W3182636149 hasAuthorship W3182636149A5089212834 @default.
- W3182636149 hasConcept C103545067 @default.
- W3182636149 hasConcept C105795698 @default.
- W3182636149 hasConcept C153720581 @default.
- W3182636149 hasConcept C154945302 @default.
- W3182636149 hasConcept C163175372 @default.
- W3182636149 hasConcept C167928553 @default.
- W3182636149 hasConcept C185429906 @default.
- W3182636149 hasConcept C19499675 @default.
- W3182636149 hasConcept C28826006 @default.
- W3182636149 hasConcept C33923547 @default.
- W3182636149 hasConcept C41008148 @default.
- W3182636149 hasConcept C81917197 @default.
- W3182636149 hasConceptScore W3182636149C103545067 @default.
- W3182636149 hasConceptScore W3182636149C105795698 @default.
- W3182636149 hasConceptScore W3182636149C153720581 @default.
- W3182636149 hasConceptScore W3182636149C154945302 @default.
- W3182636149 hasConceptScore W3182636149C163175372 @default.
- W3182636149 hasConceptScore W3182636149C167928553 @default.
- W3182636149 hasConceptScore W3182636149C185429906 @default.
- W3182636149 hasConceptScore W3182636149C19499675 @default.
- W3182636149 hasConceptScore W3182636149C28826006 @default.
- W3182636149 hasConceptScore W3182636149C33923547 @default.
- W3182636149 hasConceptScore W3182636149C41008148 @default.
- W3182636149 hasConceptScore W3182636149C81917197 @default.
- W3182636149 hasLocation W31826361491 @default.
- W3182636149 hasOpenAccess W3182636149 @default.
- W3182636149 hasPrimaryLocation W31826361491 @default.
- W3182636149 hasRelatedWork W1537371881 @default.
- W3182636149 hasRelatedWork W1999504378 @default.
- W3182636149 hasRelatedWork W2113313044 @default.
- W3182636149 hasRelatedWork W2132137727 @default.
- W3182636149 hasRelatedWork W2276853173 @default.
- W3182636149 hasRelatedWork W2358172191 @default.
- W3182636149 hasRelatedWork W3122870561 @default.
- W3182636149 hasRelatedWork W3150858532 @default.
- W3182636149 hasRelatedWork W3167299064 @default.
- W3182636149 hasRelatedWork W4233094352 @default.
- W3182636149 isParatext "false" @default.
- W3182636149 isRetracted "false" @default.
- W3182636149 magId "3182636149" @default.
- W3182636149 workType "article" @default.