Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182686523> ?p ?o ?g. }
- W3182686523 endingPage "11" @default.
- W3182686523 startingPage "1" @default.
- W3182686523 abstract "The ID3 algorithm is a key and important method in existing data mining, and its rules are simple and easy to understand and have high application value. If the decision tree algorithm is applied to the online data migration of sports competition actions, it can grasp the sports competition rules in the relationship between massive data to guide sports competition. This paper analyzes the application performance of the traditional ID3 algorithm in online data migration of sports competition actions; realizes the application steps and data processing process of the traditional ID3 algorithm, including original data collection, original data preprocessing, data preparation, constructing a decision tree, data mining, and making a comprehensive evaluation of the traditional ID3 algorithm; and clarifies the problems of the traditional ID3 algorithm. Mainly, the problems of missing attributes and overfitting are clarified, which provide directions for the subsequent algorithm optimization. Then, this paper proposes a <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>k</mi> </math> -nearest neighbor-based ID3 optimization algorithm, which selects values similar to <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mi>k</mi> </math> -nearest neighbors to fill in the missing values for the attribute missing problem of the traditional ID3 algorithm. Based on this, the improved algorithm is applied to the online data migration of sports competition actions, and the application effect is evaluated. The results show that the performance of the <math xmlns=http://www.w3.org/1998/Math/MathML id=M3> <mi>k</mi> </math> -nearest neighbor-based ID3 optimization algorithm is significantly improved, and it can also solve the overfitting problem existing in the traditional ID3 algorithm. For the overall classification problem of six types of samples of travel patterns, the experimental data samples have the characteristics of high data quality, a considerable number of samples, and obvious sample differentiation. Therefore, this paper also uses the deep factorization machine algorithm based on deep learning to classify the six classes of travel patterns of sports competition action data using the previously extracted relevant features. The research in this paper provides a more accurate method and a higher-performance online data migration model for sports competition action data mining." @default.
- W3182686523 created "2021-07-19" @default.
- W3182686523 creator A5069244818 @default.
- W3182686523 creator A5081060835 @default.
- W3182686523 creator A5090798126 @default.
- W3182686523 date "2021-07-10" @default.
- W3182686523 modified "2023-09-26" @default.
- W3182686523 title "Online Data Migration Model and ID3 Algorithm in Sports Competition Action Data Mining Application" @default.
- W3182686523 cites W2526677900 @default.
- W3182686523 cites W2560619237 @default.
- W3182686523 cites W2765314260 @default.
- W3182686523 cites W2765388976 @default.
- W3182686523 cites W2786798553 @default.
- W3182686523 cites W2790448088 @default.
- W3182686523 cites W2794686914 @default.
- W3182686523 cites W2805471831 @default.
- W3182686523 cites W2811124048 @default.
- W3182686523 cites W2883897267 @default.
- W3182686523 cites W2888346671 @default.
- W3182686523 cites W2900094251 @default.
- W3182686523 cites W2903690063 @default.
- W3182686523 cites W2907351452 @default.
- W3182686523 cites W2914777738 @default.
- W3182686523 cites W2920862201 @default.
- W3182686523 cites W2968612360 @default.
- W3182686523 cites W2979543040 @default.
- W3182686523 cites W3043365850 @default.
- W3182686523 cites W3043666018 @default.
- W3182686523 cites W3093126445 @default.
- W3182686523 cites W3167492311 @default.
- W3182686523 cites W4249228427 @default.
- W3182686523 doi "https://doi.org/10.1155/2021/7443676" @default.
- W3182686523 hasPublicationYear "2021" @default.
- W3182686523 type Work @default.
- W3182686523 sameAs 3182686523 @default.
- W3182686523 citedByCount "2" @default.
- W3182686523 countsByYear W31826865232022 @default.
- W3182686523 countsByYear W31826865232023 @default.
- W3182686523 crossrefType "journal-article" @default.
- W3182686523 hasAuthorship W3182686523A5069244818 @default.
- W3182686523 hasAuthorship W3182686523A5081060835 @default.
- W3182686523 hasAuthorship W3182686523A5090798126 @default.
- W3182686523 hasBestOaLocation W31826865231 @default.
- W3182686523 hasConcept C10229987 @default.
- W3182686523 hasConcept C10551718 @default.
- W3182686523 hasConcept C113174947 @default.
- W3182686523 hasConcept C11413529 @default.
- W3182686523 hasConcept C119857082 @default.
- W3182686523 hasConcept C124101348 @default.
- W3182686523 hasConcept C134306372 @default.
- W3182686523 hasConcept C154945302 @default.
- W3182686523 hasConcept C174599459 @default.
- W3182686523 hasConcept C183931066 @default.
- W3182686523 hasConcept C18903297 @default.
- W3182686523 hasConcept C22019652 @default.
- W3182686523 hasConcept C33923547 @default.
- W3182686523 hasConcept C41008148 @default.
- W3182686523 hasConcept C50644808 @default.
- W3182686523 hasConcept C5481197 @default.
- W3182686523 hasConcept C84525736 @default.
- W3182686523 hasConcept C86803240 @default.
- W3182686523 hasConcept C91306197 @default.
- W3182686523 hasConcept C9357733 @default.
- W3182686523 hasConceptScore W3182686523C10229987 @default.
- W3182686523 hasConceptScore W3182686523C10551718 @default.
- W3182686523 hasConceptScore W3182686523C113174947 @default.
- W3182686523 hasConceptScore W3182686523C11413529 @default.
- W3182686523 hasConceptScore W3182686523C119857082 @default.
- W3182686523 hasConceptScore W3182686523C124101348 @default.
- W3182686523 hasConceptScore W3182686523C134306372 @default.
- W3182686523 hasConceptScore W3182686523C154945302 @default.
- W3182686523 hasConceptScore W3182686523C174599459 @default.
- W3182686523 hasConceptScore W3182686523C183931066 @default.
- W3182686523 hasConceptScore W3182686523C18903297 @default.
- W3182686523 hasConceptScore W3182686523C22019652 @default.
- W3182686523 hasConceptScore W3182686523C33923547 @default.
- W3182686523 hasConceptScore W3182686523C41008148 @default.
- W3182686523 hasConceptScore W3182686523C50644808 @default.
- W3182686523 hasConceptScore W3182686523C5481197 @default.
- W3182686523 hasConceptScore W3182686523C84525736 @default.
- W3182686523 hasConceptScore W3182686523C86803240 @default.
- W3182686523 hasConceptScore W3182686523C91306197 @default.
- W3182686523 hasConceptScore W3182686523C9357733 @default.
- W3182686523 hasLocation W31826865231 @default.
- W3182686523 hasOpenAccess W3182686523 @default.
- W3182686523 hasPrimaryLocation W31826865231 @default.
- W3182686523 hasRelatedWork W2005780 @default.
- W3182686523 hasRelatedWork W2072960953 @default.
- W3182686523 hasRelatedWork W2169280041 @default.
- W3182686523 hasRelatedWork W2364053385 @default.
- W3182686523 hasRelatedWork W2375672202 @default.
- W3182686523 hasRelatedWork W2381027363 @default.
- W3182686523 hasRelatedWork W2389205545 @default.
- W3182686523 hasRelatedWork W2548293269 @default.
- W3182686523 hasRelatedWork W2767879046 @default.
- W3182686523 hasRelatedWork W2184032726 @default.
- W3182686523 hasVolume "2021" @default.
- W3182686523 isParatext "false" @default.