Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182700895> ?p ?o ?g. }
- W3182700895 endingPage "109166" @default.
- W3182700895 startingPage "109166" @default.
- W3182700895 abstract "Gas injection into coal seams is gaining increasing attention for improving coalbed methane (CBM) production. This technical development requires detailed and reliable information on gas adsorption/desorption-induced deformation and gas occurrence mechanisms. Hence, in this paper, high volatile bituminous coal was taken as the experiment samples from northern Shannxi Province, China, and adsorption-induced swelling experiments with CO 2 and N 2 were carried out under the conditions of one-time injection and step-by-step injection. Then, based on adsorption-induced swelling characteristics, a thermodynamic model was further established to disclose the adsorption/desorption-induced deformation mechanism of confined coals. Results showed that the swelling/shrinkage strain curves of CO 2 and N 2 adsorption/desorption in the coal matrix were generally divided into four stages, including pressurization-deformation, adsorption-induced swelling, depressurization-deformation, and finally desorption-induced shrinkage. It can be seen that the coal swelling effect caused by N 2 adsorption was far less than that caused by CO 2 adsorption. However, both CO 2 and N 2 adsorption displayed that the apparent volumetric swelling weakened with increasing strain when compared with the same adsorption pressure under different strain conditions. In contrast, the absolute volumetric swelling of the confined coal was a coupling result from adsorption-induced swelling and pore pressure effects. Further, based on the thermodynamic model, it was verified that the adsorbate type, the chemical potential of the adsorbate molecule and stress conditions are key factors affecting adsorption-induced swelling of coal under a certain temperature and pressure. In addition, a desorption lag phenomenon during the desorption-induced shrinkage stage was observed, due to incomplete gas desorption and gas retention in the coal macromolecular network. It was also found that there was a shrinkage phenomenon after the peak strain during gas adsorption. That is to say, when fixed adsorption sites on the coal pore surface reached the adsorption saturation state at the peak strain, gas molecules would be stored in an absorption state in the coal macromolecular network under continuous adsorption. These phenomena further explained coal swelling and gas occurrence mechanisms. • Swelling/shrinkage strain curve can be generally divided into four stages. • Absolute volumetric swelling is controlled by adsorption swelling and pore pressure. • Thermodynamic model reflects Gibbs free energy of gas adsorption in coal decreases. • Adsorption-induced swelling effect tends to be dropped with increasing stress. • Shrinkage effect after peak strain and desorption lag are occurred in whole process." @default.
- W3182700895 created "2021-07-19" @default.
- W3182700895 creator A5010612432 @default.
- W3182700895 creator A5019141333 @default.
- W3182700895 creator A5027947594 @default.
- W3182700895 creator A5035804461 @default.
- W3182700895 creator A5076409244 @default.
- W3182700895 creator A5078354674 @default.
- W3182700895 creator A5082924617 @default.
- W3182700895 date "2021-12-01" @default.
- W3182700895 modified "2023-10-18" @default.
- W3182700895 title "CO2 and N2 adsorption/desorption effects and thermodynamic characteristics in confined coal" @default.
- W3182700895 cites W1059499822 @default.
- W3182700895 cites W1966498061 @default.
- W3182700895 cites W1968768674 @default.
- W3182700895 cites W1971066254 @default.
- W3182700895 cites W1975135833 @default.
- W3182700895 cites W1985432098 @default.
- W3182700895 cites W1999782935 @default.
- W3182700895 cites W2005681759 @default.
- W3182700895 cites W2009412567 @default.
- W3182700895 cites W2010888239 @default.
- W3182700895 cites W2012257952 @default.
- W3182700895 cites W2015040785 @default.
- W3182700895 cites W2017073502 @default.
- W3182700895 cites W2021175603 @default.
- W3182700895 cites W2027555659 @default.
- W3182700895 cites W2029759118 @default.
- W3182700895 cites W2050436623 @default.
- W3182700895 cites W2065316249 @default.
- W3182700895 cites W2069202898 @default.
- W3182700895 cites W2071277175 @default.
- W3182700895 cites W2074671876 @default.
- W3182700895 cites W2076451369 @default.
- W3182700895 cites W2082014171 @default.
- W3182700895 cites W2084619395 @default.
- W3182700895 cites W2092430380 @default.
- W3182700895 cites W2121085218 @default.
- W3182700895 cites W2167067677 @default.
- W3182700895 cites W2167583415 @default.
- W3182700895 cites W2169408260 @default.
- W3182700895 cites W2324811117 @default.
- W3182700895 cites W2330593661 @default.
- W3182700895 cites W2355070941 @default.
- W3182700895 cites W2590913993 @default.
- W3182700895 cites W2745412868 @default.
- W3182700895 cites W2782214287 @default.
- W3182700895 cites W2895530425 @default.
- W3182700895 cites W2909186077 @default.
- W3182700895 cites W2957616692 @default.
- W3182700895 cites W2994828913 @default.
- W3182700895 cites W3004651051 @default.
- W3182700895 cites W3046026588 @default.
- W3182700895 doi "https://doi.org/10.1016/j.petrol.2021.109166" @default.
- W3182700895 hasPublicationYear "2021" @default.
- W3182700895 type Work @default.
- W3182700895 sameAs 3182700895 @default.
- W3182700895 citedByCount "17" @default.
- W3182700895 countsByYear W31827008952022 @default.
- W3182700895 countsByYear W31827008952023 @default.
- W3182700895 crossrefType "journal-article" @default.
- W3182700895 hasAuthorship W3182700895A5010612432 @default.
- W3182700895 hasAuthorship W3182700895A5019141333 @default.
- W3182700895 hasAuthorship W3182700895A5027947594 @default.
- W3182700895 hasAuthorship W3182700895A5035804461 @default.
- W3182700895 hasAuthorship W3182700895A5076409244 @default.
- W3182700895 hasAuthorship W3182700895A5078354674 @default.
- W3182700895 hasAuthorship W3182700895A5082924617 @default.
- W3182700895 hasConcept C108615695 @default.
- W3182700895 hasConcept C127413603 @default.
- W3182700895 hasConcept C150394285 @default.
- W3182700895 hasConcept C159985019 @default.
- W3182700895 hasConcept C162711632 @default.
- W3182700895 hasConcept C178790620 @default.
- W3182700895 hasConcept C180145272 @default.
- W3182700895 hasConcept C185592680 @default.
- W3182700895 hasConcept C192562407 @default.
- W3182700895 hasConcept C204366326 @default.
- W3182700895 hasConcept C2776469828 @default.
- W3182700895 hasConcept C2778540859 @default.
- W3182700895 hasConcept C42360764 @default.
- W3182700895 hasConcept C516920438 @default.
- W3182700895 hasConcept C518851703 @default.
- W3182700895 hasConceptScore W3182700895C108615695 @default.
- W3182700895 hasConceptScore W3182700895C127413603 @default.
- W3182700895 hasConceptScore W3182700895C150394285 @default.
- W3182700895 hasConceptScore W3182700895C159985019 @default.
- W3182700895 hasConceptScore W3182700895C162711632 @default.
- W3182700895 hasConceptScore W3182700895C178790620 @default.
- W3182700895 hasConceptScore W3182700895C180145272 @default.
- W3182700895 hasConceptScore W3182700895C185592680 @default.
- W3182700895 hasConceptScore W3182700895C192562407 @default.
- W3182700895 hasConceptScore W3182700895C204366326 @default.
- W3182700895 hasConceptScore W3182700895C2776469828 @default.
- W3182700895 hasConceptScore W3182700895C2778540859 @default.
- W3182700895 hasConceptScore W3182700895C42360764 @default.
- W3182700895 hasConceptScore W3182700895C516920438 @default.
- W3182700895 hasConceptScore W3182700895C518851703 @default.