Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182756653> ?p ?o ?g. }
- W3182756653 endingPage "107052" @default.
- W3182756653 startingPage "107052" @default.
- W3182756653 abstract "Timely and reliable water footprint prediction is imperative and prerequisite to mitigate climate risk and ensure water and food security and enhance the water-use efficiency. This study aims to model the Water Footprint (WF) by using the four kernels of Gaussian processes models (Polynomial, Normalized Poly, Radial Basis Function RBF, and Pearson Universal Function PUK) and select the best kernel with best climate scenario. This study investigates the predicting WF of maize based on meteorological variables including maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), solar radiation (SR), wind speed (WS), and vapor pressure deficit (VPD), Extraterrestrial radiation (Ra) relative humidity (RH) and crop coefficient (Kc) by applying ten scenarios of climate variables in the Egyptian Nile Delta, Ad Daqahliyah Governorate for predicting blue WF of maize during 2000–2019. The main findings are following as, firstly; based on developing four kernels, the performance of the PUK kernel in predicting blue WF is far better than the other three kernels followed by the Poly kernel. Secondly; for PUK kernel, model 7 (Tmax, Tmin, Tmean, WS, Sunshine Hours (SH), VPD and SR) has good performance which is close to models 8 (model 7 + Ra), model 9 (model 7 + Ra and RH) and model 10 (all inputs). Thirdly; in all four kernels, the error rate in small blue WF values is higher than the other values, moreover, the error value decreases at the medium blue WF values, while, it increases again at large WF values. Therefore, the developed models in this study can help and promote the decision makers to manage and secure the water resources management under the extreme climate events." @default.
- W3182756653 created "2021-07-19" @default.
- W3182756653 creator A5002057312 @default.
- W3182756653 creator A5011736589 @default.
- W3182756653 creator A5021771514 @default.
- W3182756653 creator A5040230279 @default.
- W3182756653 creator A5045257674 @default.
- W3182756653 creator A5056993916 @default.
- W3182756653 creator A5059091808 @default.
- W3182756653 creator A5059823880 @default.
- W3182756653 creator A5082943987 @default.
- W3182756653 creator A5088853821 @default.
- W3182756653 date "2021-09-01" @default.
- W3182756653 modified "2023-10-18" @default.
- W3182756653 title "Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt" @default.
- W3182756653 cites W1175502716 @default.
- W3182756653 cites W1247324499 @default.
- W3182756653 cites W1454063703 @default.
- W3182756653 cites W1596631708 @default.
- W3182756653 cites W1773142508 @default.
- W3182756653 cites W1979458251 @default.
- W3182756653 cites W1986286171 @default.
- W3182756653 cites W1989120577 @default.
- W3182756653 cites W2013929199 @default.
- W3182756653 cites W2019452249 @default.
- W3182756653 cites W2038879219 @default.
- W3182756653 cites W2039599379 @default.
- W3182756653 cites W2049387654 @default.
- W3182756653 cites W2093027911 @default.
- W3182756653 cites W2096829520 @default.
- W3182756653 cites W2138827585 @default.
- W3182756653 cites W2139890487 @default.
- W3182756653 cites W2142167766 @default.
- W3182756653 cites W2159642665 @default.
- W3182756653 cites W2254709541 @default.
- W3182756653 cites W2288250144 @default.
- W3182756653 cites W2368827043 @default.
- W3182756653 cites W2478618039 @default.
- W3182756653 cites W2570731156 @default.
- W3182756653 cites W2579372028 @default.
- W3182756653 cites W2590525140 @default.
- W3182756653 cites W2596932606 @default.
- W3182756653 cites W2743891890 @default.
- W3182756653 cites W2765133759 @default.
- W3182756653 cites W2765900141 @default.
- W3182756653 cites W2769642482 @default.
- W3182756653 cites W2769923112 @default.
- W3182756653 cites W2784327149 @default.
- W3182756653 cites W2785767012 @default.
- W3182756653 cites W2808182550 @default.
- W3182756653 cites W2808266698 @default.
- W3182756653 cites W2888616349 @default.
- W3182756653 cites W2921661126 @default.
- W3182756653 cites W2930717287 @default.
- W3182756653 cites W2935064930 @default.
- W3182756653 cites W2939840252 @default.
- W3182756653 cites W2951110792 @default.
- W3182756653 cites W2952619441 @default.
- W3182756653 cites W2956733809 @default.
- W3182756653 cites W2969696008 @default.
- W3182756653 cites W2989857765 @default.
- W3182756653 cites W3000174135 @default.
- W3182756653 cites W3014648180 @default.
- W3182756653 cites W3015852769 @default.
- W3182756653 cites W3036869571 @default.
- W3182756653 cites W3037961787 @default.
- W3182756653 cites W3038804469 @default.
- W3182756653 cites W3039913885 @default.
- W3182756653 cites W3080634200 @default.
- W3182756653 cites W3093295696 @default.
- W3182756653 cites W3095388713 @default.
- W3182756653 cites W3103444592 @default.
- W3182756653 cites W3119273299 @default.
- W3182756653 cites W3125537520 @default.
- W3182756653 cites W3132114041 @default.
- W3182756653 cites W3134957427 @default.
- W3182756653 cites W3156959225 @default.
- W3182756653 cites W3164693126 @default.
- W3182756653 cites W3164790203 @default.
- W3182756653 doi "https://doi.org/10.1016/j.agwat.2021.107052" @default.
- W3182756653 hasPublicationYear "2021" @default.
- W3182756653 type Work @default.
- W3182756653 sameAs 3182756653 @default.
- W3182756653 citedByCount "30" @default.
- W3182756653 countsByYear W31827566532021 @default.
- W3182756653 countsByYear W31827566532022 @default.
- W3182756653 countsByYear W31827566532023 @default.
- W3182756653 crossrefType "journal-article" @default.
- W3182756653 hasAuthorship W3182756653A5002057312 @default.
- W3182756653 hasAuthorship W3182756653A5011736589 @default.
- W3182756653 hasAuthorship W3182756653A5021771514 @default.
- W3182756653 hasAuthorship W3182756653A5040230279 @default.
- W3182756653 hasAuthorship W3182756653A5045257674 @default.
- W3182756653 hasAuthorship W3182756653A5056993916 @default.
- W3182756653 hasAuthorship W3182756653A5059091808 @default.
- W3182756653 hasAuthorship W3182756653A5059823880 @default.
- W3182756653 hasAuthorship W3182756653A5082943987 @default.
- W3182756653 hasAuthorship W3182756653A5088853821 @default.