Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182829589> ?p ?o ?g. }
- W3182829589 endingPage "106927" @default.
- W3182829589 startingPage "106927" @default.
- W3182829589 abstract "The variance-based method of global sensitivity analysis (GSA) has been widely applied in spacecraft thermal design, which is typically calculated using Monte Carlo estimations. However, such estimations require a large number of samples to ensure sufficient accuracy, which makes GSA expensive to perform when modeling is difficult. Moreover, multimodal or highly skewed output distributions may result in the use of variance as an uncertain agent that generates contradictory results. Therefore, an intelligent density-based GSA framework based on machine learning and multi-fidelity metamodels called IDGSA-3M is proposed. An intelligent batch processing system based on a real-time data interaction between MATLAB and NX/TMG was designed that uses many cheap low-fidelity sample points to reduce the cost of model evaluation while using a small number of expensive high-fidelity sample points to maintain high accuracy, thus achieving trade-offs between high accuracy and low computational cost. A radial basis function (RBF) neural network based on an improved mind evolutionary algorithm was applied to approximate the multi-fidelity metamodel of a spacecraft thermophysical model calculated using a batch processing system, which had a computational speed that was 1000+ times faster than that of the traditional thermophysical model and a high computational accuracy of 99%+. The output distributions of the RBF were then characterized by its cumulative distribution functions to obtain density-based sensitivity indices. Both the theoretical and experimental results of GSA for the thermal design parameters of the extreme ultraviolet radiation detector on the space-based Lyman-Alpha Solar Telescope, developed in China, demonstrated that the convergence rate of IDGSA-3M can be improved up to 10-fold for a fixed convergence level in comparison with two other GSA methods, thereby verifying its superiority." @default.
- W3182829589 created "2021-07-19" @default.
- W3182829589 creator A5017021156 @default.
- W3182829589 creator A5029072143 @default.
- W3182829589 creator A5056930506 @default.
- W3182829589 creator A5065661879 @default.
- W3182829589 date "2021-11-01" @default.
- W3182829589 modified "2023-10-15" @default.
- W3182829589 title "Intelligent sensitivity analysis framework based on machine learning for spacecraft thermal design" @default.
- W3182829589 cites W1535712589 @default.
- W3182829589 cites W1964601671 @default.
- W3182829589 cites W1979362125 @default.
- W3182829589 cites W1979399257 @default.
- W3182829589 cites W1980800037 @default.
- W3182829589 cites W1981618598 @default.
- W3182829589 cites W1987528010 @default.
- W3182829589 cites W1989539671 @default.
- W3182829589 cites W1993599011 @default.
- W3182829589 cites W1993958370 @default.
- W3182829589 cites W1994080277 @default.
- W3182829589 cites W2004325205 @default.
- W3182829589 cites W2009804339 @default.
- W3182829589 cites W2011624080 @default.
- W3182829589 cites W2014017759 @default.
- W3182829589 cites W2027609036 @default.
- W3182829589 cites W2031724906 @default.
- W3182829589 cites W2064103328 @default.
- W3182829589 cites W2073344030 @default.
- W3182829589 cites W2086099565 @default.
- W3182829589 cites W2096369439 @default.
- W3182829589 cites W2104097683 @default.
- W3182829589 cites W2132169421 @default.
- W3182829589 cites W2287992427 @default.
- W3182829589 cites W2288328226 @default.
- W3182829589 cites W2317808322 @default.
- W3182829589 cites W2552929304 @default.
- W3182829589 cites W2566096312 @default.
- W3182829589 cites W2600867386 @default.
- W3182829589 cites W2606553190 @default.
- W3182829589 cites W2739913959 @default.
- W3182829589 cites W2742038006 @default.
- W3182829589 cites W2776253423 @default.
- W3182829589 cites W2794287922 @default.
- W3182829589 cites W2802326337 @default.
- W3182829589 cites W2803535874 @default.
- W3182829589 cites W2804174173 @default.
- W3182829589 cites W2806900357 @default.
- W3182829589 cites W2886782454 @default.
- W3182829589 cites W2914113975 @default.
- W3182829589 cites W2931365531 @default.
- W3182829589 cites W2945805531 @default.
- W3182829589 cites W2947150530 @default.
- W3182829589 cites W2972051522 @default.
- W3182829589 cites W2984087585 @default.
- W3182829589 cites W2998566163 @default.
- W3182829589 cites W2998813112 @default.
- W3182829589 cites W2999530977 @default.
- W3182829589 cites W3038111674 @default.
- W3182829589 cites W3122455945 @default.
- W3182829589 doi "https://doi.org/10.1016/j.ast.2021.106927" @default.
- W3182829589 hasPublicationYear "2021" @default.
- W3182829589 type Work @default.
- W3182829589 sameAs 3182829589 @default.
- W3182829589 citedByCount "6" @default.
- W3182829589 countsByYear W31828295892022 @default.
- W3182829589 countsByYear W31828295892023 @default.
- W3182829589 crossrefType "journal-article" @default.
- W3182829589 hasAuthorship W3182829589A5017021156 @default.
- W3182829589 hasAuthorship W3182829589A5029072143 @default.
- W3182829589 hasAuthorship W3182829589A5056930506 @default.
- W3182829589 hasAuthorship W3182829589A5065661879 @default.
- W3182829589 hasConcept C105795698 @default.
- W3182829589 hasConcept C111919701 @default.
- W3182829589 hasConcept C11413529 @default.
- W3182829589 hasConcept C119857082 @default.
- W3182829589 hasConcept C127413603 @default.
- W3182829589 hasConcept C146978453 @default.
- W3182829589 hasConcept C154945302 @default.
- W3182829589 hasConcept C19499675 @default.
- W3182829589 hasConcept C199360897 @default.
- W3182829589 hasConcept C21200559 @default.
- W3182829589 hasConcept C24326235 @default.
- W3182829589 hasConcept C2776459999 @default.
- W3182829589 hasConcept C2780365114 @default.
- W3182829589 hasConcept C29829512 @default.
- W3182829589 hasConcept C33923547 @default.
- W3182829589 hasConcept C41008148 @default.
- W3182829589 hasConcept C50644808 @default.
- W3182829589 hasConcept C76155785 @default.
- W3182829589 hasConcept C86610423 @default.
- W3182829589 hasConcept C98856871 @default.
- W3182829589 hasConceptScore W3182829589C105795698 @default.
- W3182829589 hasConceptScore W3182829589C111919701 @default.
- W3182829589 hasConceptScore W3182829589C11413529 @default.
- W3182829589 hasConceptScore W3182829589C119857082 @default.
- W3182829589 hasConceptScore W3182829589C127413603 @default.
- W3182829589 hasConceptScore W3182829589C146978453 @default.
- W3182829589 hasConceptScore W3182829589C154945302 @default.