Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182869665> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3182869665 abstract "Nickel is a key competitive material source with commodities and economic characteristics, the price volatility of which would influence shareholder's decisions. For this reason, an accurate pattern prediction of nickel prices is a crucial concern for the strategic planning of investors in the nickel trade; however, the conventional neural network models are not effective in terms of predictive performance and suitability. So, Gaussian Processes-Long Short-Term Memory (GP-LSTM) model was suggested to learn the LSTM kernels and predict the nickel prices. However, this kernel function representation was not plenty for a huge amount of data captured from various sources. Also, it cannot completely learn dynamic, composite and structural data attributes. Therefore in this article, a Multiple-Kernel LSTM (MKLSTM) network model is proposed for learning the huge amount of data and predicting the nickel prices efficiently. The core objective of this MKLSTM model is to resolve the difficulty of adding LSTM and multiple kernel functions using data from nickel industries. This model is applied to find the significant attributes for representing suitable data. Also, the proper larger kernels for learning dynamic and structural data attributes are selected by constructing a Directed Acyclic Graph (DAG). By using the selected kernels, the MKLSTM is learned to predict the nickel price and its fluctuations. At last, the experimental results exhibit the performance of MKLSTM using the nickel price database compared to the LSTM and GP-LSTM models." @default.
- W3182869665 created "2021-07-19" @default.
- W3182869665 creator A5007708163 @default.
- W3182869665 creator A5011715763 @default.
- W3182869665 creator A5015960975 @default.
- W3182869665 creator A5024736663 @default.
- W3182869665 creator A5074146457 @default.
- W3182869665 date "2020-12-18" @default.
- W3182869665 modified "2023-09-26" @default.
- W3182869665 title "Enhanced Prediction for Investment Portfolio Management using Multiple Kernel-based Long Short-Term Memory-Network for Nickel Price Prediction" @default.
- W3182869665 cites W2766606194 @default.
- W3182869665 cites W2782085727 @default.
- W3182869665 cites W2789364533 @default.
- W3182869665 cites W2800138630 @default.
- W3182869665 cites W2890983154 @default.
- W3182869665 cites W2913981596 @default.
- W3182869665 doi "https://doi.org/10.1109/icot51877.2020.9468787" @default.
- W3182869665 hasPublicationYear "2020" @default.
- W3182869665 type Work @default.
- W3182869665 sameAs 3182869665 @default.
- W3182869665 citedByCount "0" @default.
- W3182869665 crossrefType "proceedings-article" @default.
- W3182869665 hasAuthorship W3182869665A5007708163 @default.
- W3182869665 hasAuthorship W3182869665A5011715763 @default.
- W3182869665 hasAuthorship W3182869665A5015960975 @default.
- W3182869665 hasAuthorship W3182869665A5024736663 @default.
- W3182869665 hasAuthorship W3182869665A5074146457 @default.
- W3182869665 hasConcept C10138342 @default.
- W3182869665 hasConcept C114614502 @default.
- W3182869665 hasConcept C119857082 @default.
- W3182869665 hasConcept C121332964 @default.
- W3182869665 hasConcept C124101348 @default.
- W3182869665 hasConcept C147168706 @default.
- W3182869665 hasConcept C149782125 @default.
- W3182869665 hasConcept C154945302 @default.
- W3182869665 hasConcept C162324750 @default.
- W3182869665 hasConcept C163716315 @default.
- W3182869665 hasConcept C2780821815 @default.
- W3182869665 hasConcept C33923547 @default.
- W3182869665 hasConcept C41008148 @default.
- W3182869665 hasConcept C50644808 @default.
- W3182869665 hasConcept C62520636 @default.
- W3182869665 hasConcept C7218915 @default.
- W3182869665 hasConcept C74193536 @default.
- W3182869665 hasConcept C91602232 @default.
- W3182869665 hasConceptScore W3182869665C10138342 @default.
- W3182869665 hasConceptScore W3182869665C114614502 @default.
- W3182869665 hasConceptScore W3182869665C119857082 @default.
- W3182869665 hasConceptScore W3182869665C121332964 @default.
- W3182869665 hasConceptScore W3182869665C124101348 @default.
- W3182869665 hasConceptScore W3182869665C147168706 @default.
- W3182869665 hasConceptScore W3182869665C149782125 @default.
- W3182869665 hasConceptScore W3182869665C154945302 @default.
- W3182869665 hasConceptScore W3182869665C162324750 @default.
- W3182869665 hasConceptScore W3182869665C163716315 @default.
- W3182869665 hasConceptScore W3182869665C2780821815 @default.
- W3182869665 hasConceptScore W3182869665C33923547 @default.
- W3182869665 hasConceptScore W3182869665C41008148 @default.
- W3182869665 hasConceptScore W3182869665C50644808 @default.
- W3182869665 hasConceptScore W3182869665C62520636 @default.
- W3182869665 hasConceptScore W3182869665C7218915 @default.
- W3182869665 hasConceptScore W3182869665C74193536 @default.
- W3182869665 hasConceptScore W3182869665C91602232 @default.
- W3182869665 hasLocation W31828696651 @default.
- W3182869665 hasOpenAccess W3182869665 @default.
- W3182869665 hasPrimaryLocation W31828696651 @default.
- W3182869665 hasRelatedWork W145098650 @default.
- W3182869665 hasRelatedWork W2372482000 @default.
- W3182869665 hasRelatedWork W2384408398 @default.
- W3182869665 hasRelatedWork W2793022090 @default.
- W3182869665 hasRelatedWork W4213142596 @default.
- W3182869665 hasRelatedWork W4243487617 @default.
- W3182869665 hasRelatedWork W4281386417 @default.
- W3182869665 hasRelatedWork W4327831767 @default.
- W3182869665 hasRelatedWork W1629725936 @default.
- W3182869665 hasRelatedWork W2183680581 @default.
- W3182869665 isParatext "false" @default.
- W3182869665 isRetracted "false" @default.
- W3182869665 magId "3182869665" @default.
- W3182869665 workType "article" @default.