Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183018501> ?p ?o ?g. }
- W3183018501 endingPage "115233" @default.
- W3183018501 startingPage "115233" @default.
- W3183018501 abstract "The pH of a solution has a large influence on the ion removal efficiency of the membrane capacitive deionization (MCDI) process, an electrochemical ion separation process. We developed a convolutional neural network linked with a long short-term memory (CNN-LSTM) model based on an artificial intelligence algorithm to predict the effluent pH of MCDI, as effluent pH is difficult to predict using conventional numerical modeling. The model accurately predicted effluent pH (R2≥0.998) based on the analysis of five input variables (current, voltage, influent conductivity and pH, and effluent conductivity) under standard operating conditions of MCDI using either constant-current or constant-voltage conditions. The developed model predicted effluent pH using only limited input variables, current and voltage, with high accuracy (R2≥0.997). Thus, the CNN-LSTM model can be used in practical applications as only the current and voltage of MCDI cells are often monitored in field applications." @default.
- W3183018501 created "2021-07-19" @default.
- W3183018501 creator A5006144504 @default.
- W3183018501 creator A5028223951 @default.
- W3183018501 creator A5036564357 @default.
- W3183018501 creator A5042483910 @default.
- W3183018501 creator A5043605966 @default.
- W3183018501 creator A5063098059 @default.
- W3183018501 date "2021-11-01" @default.
- W3183018501 modified "2023-10-11" @default.
- W3183018501 title "Deep learning for pH prediction in water desalination using membrane capacitive deionization" @default.
- W3183018501 cites W1964978966 @default.
- W3183018501 cites W1986720183 @default.
- W3183018501 cites W2008484484 @default.
- W3183018501 cites W2014559353 @default.
- W3183018501 cites W2021858012 @default.
- W3183018501 cites W2039712277 @default.
- W3183018501 cites W2052281207 @default.
- W3183018501 cites W2052361757 @default.
- W3183018501 cites W2074868396 @default.
- W3183018501 cites W2087152232 @default.
- W3183018501 cites W2522485430 @default.
- W3183018501 cites W2606686344 @default.
- W3183018501 cites W2765431835 @default.
- W3183018501 cites W2796813311 @default.
- W3183018501 cites W2809267474 @default.
- W3183018501 cites W2812669263 @default.
- W3183018501 cites W2906821278 @default.
- W3183018501 cites W2914194779 @default.
- W3183018501 cites W2919115771 @default.
- W3183018501 cites W2924962937 @default.
- W3183018501 cites W2933636570 @default.
- W3183018501 cites W2948490758 @default.
- W3183018501 cites W2951545958 @default.
- W3183018501 cites W2963428668 @default.
- W3183018501 cites W2963693806 @default.
- W3183018501 cites W2989447618 @default.
- W3183018501 cites W2990874715 @default.
- W3183018501 cites W2995692565 @default.
- W3183018501 cites W3017116930 @default.
- W3183018501 cites W3037127898 @default.
- W3183018501 cites W3048058014 @default.
- W3183018501 cites W3049235151 @default.
- W3183018501 cites W3080735628 @default.
- W3183018501 cites W3092371297 @default.
- W3183018501 cites W3137815269 @default.
- W3183018501 cites W3139179337 @default.
- W3183018501 cites W3157061921 @default.
- W3183018501 doi "https://doi.org/10.1016/j.desal.2021.115233" @default.
- W3183018501 hasPublicationYear "2021" @default.
- W3183018501 type Work @default.
- W3183018501 sameAs 3183018501 @default.
- W3183018501 citedByCount "17" @default.
- W3183018501 countsByYear W31830185012021 @default.
- W3183018501 countsByYear W31830185012022 @default.
- W3183018501 countsByYear W31830185012023 @default.
- W3183018501 crossrefType "journal-article" @default.
- W3183018501 hasAuthorship W3183018501A5006144504 @default.
- W3183018501 hasAuthorship W3183018501A5028223951 @default.
- W3183018501 hasAuthorship W3183018501A5036564357 @default.
- W3183018501 hasAuthorship W3183018501A5042483910 @default.
- W3183018501 hasAuthorship W3183018501A5043605966 @default.
- W3183018501 hasAuthorship W3183018501A5063098059 @default.
- W3183018501 hasConcept C107872376 @default.
- W3183018501 hasConcept C111919701 @default.
- W3183018501 hasConcept C113196181 @default.
- W3183018501 hasConcept C119599485 @default.
- W3183018501 hasConcept C127413603 @default.
- W3183018501 hasConcept C131540310 @default.
- W3183018501 hasConcept C147455438 @default.
- W3183018501 hasConcept C147789679 @default.
- W3183018501 hasConcept C148043351 @default.
- W3183018501 hasConcept C154945302 @default.
- W3183018501 hasConcept C165801399 @default.
- W3183018501 hasConcept C185592680 @default.
- W3183018501 hasConcept C206755178 @default.
- W3183018501 hasConcept C21880701 @default.
- W3183018501 hasConcept C2776870568 @default.
- W3183018501 hasConcept C2780987889 @default.
- W3183018501 hasConcept C39432304 @default.
- W3183018501 hasConcept C41008148 @default.
- W3183018501 hasConcept C41625074 @default.
- W3183018501 hasConcept C50644808 @default.
- W3183018501 hasConcept C53392680 @default.
- W3183018501 hasConcept C55493867 @default.
- W3183018501 hasConcept C87717796 @default.
- W3183018501 hasConcept C98045186 @default.
- W3183018501 hasConceptScore W3183018501C107872376 @default.
- W3183018501 hasConceptScore W3183018501C111919701 @default.
- W3183018501 hasConceptScore W3183018501C113196181 @default.
- W3183018501 hasConceptScore W3183018501C119599485 @default.
- W3183018501 hasConceptScore W3183018501C127413603 @default.
- W3183018501 hasConceptScore W3183018501C131540310 @default.
- W3183018501 hasConceptScore W3183018501C147455438 @default.
- W3183018501 hasConceptScore W3183018501C147789679 @default.
- W3183018501 hasConceptScore W3183018501C148043351 @default.
- W3183018501 hasConceptScore W3183018501C154945302 @default.
- W3183018501 hasConceptScore W3183018501C165801399 @default.