Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183060718> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3183060718 endingPage "100304" @default.
- W3183060718 startingPage "100304" @default.
- W3183060718 abstract "Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain’s visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs). Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain’s visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs). While neuroprosthetics for restoration of movement have substantially advanced over the last years, implementing effective sensory neuroprosthetics proved very challenging because effective brain/neural stimulation protocols were lacking. In this issue of Patterns, Romeni et al. propose a method to optimize optic nerve stimulation parameters for vision restoration using an artificial brain network.1Romeni S. Zoccolan D. Micera S. A machine learning framework to optimize optic nerve electrical stimulation for vision restoration.Patterns. 2021; 2https://doi.org/10.1016/j.patter.2021.100286Abstract Full Text Full Text PDF Scopus (3) Google Scholar By performing in silico experiments, they found that their stimulation framework achieves results comparable to natural vision. Such work highlights the potential of neurotechnology informed by artificial models of the brain and suggests that artificial neural networks may substantially aid the development of bidirectional brain-computer interfaces (BCIs) restoring both perception and action. Neuroprosthetics, i.e., systems that substitute for motor, sensory, or cognitive functions, require neural interfaces that can interact with the brain. Such interaction builds on brain/neural signal decoding, e.g., to restore motor function in paralysis,2Soekadar S.R. Witkowski M. Gomez C. Opisso E. Medina J. Cortese M. Cempini M. Carrozza M.C. Cohen L.G. Birbaumer N. Vitiello N. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia.Science Robotics. 2016; 1: eaag3296Crossref PubMed Scopus (110) Google Scholar and stimulation of neural tissue or nerves, e.g., for restoration of sensory function. Based on operant conditioning of neural cell assemblies and machine learning, motor and cognitive neuroprosthetics have achieved remarkable versatility, e.g., continuous control of individual finger, wrist, and hand movements using surface or implanted functional electric stimulation (FES).3Bouton C.E. Shaikhouni A. Annetta N.V. Bockbrader M.A. Friedenberg D.A. Nielson D.M. Sharma G. Sederberg P.B. Glenn B.C. Mysiw W.J. et al.Restoring cortical control of functional movement in a human with quadriplegia.Nature. 2016; 533: 247-250Crossref PubMed Scopus (449) Google Scholar,4Ajiboye A.B. Willett F.R. Young D.R. Memberg W.D. Murphy B.A. Miller J.P. Walter B.L. Sweet J.A. Hoyen H.A. Keith M.W. et al.Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration.Lancet. 2017; 389: 1821-1830Abstract Full Text Full Text PDF PubMed Scopus (365) Google Scholar Recently, such a system was successfully enhanced by somatosensory cortex stimulation that substantially improved prosthetic hand and arm control by evoking tactile sensations.5Flesher S.N. Downey J.E. Weiss J.M. Hughes C.L. Herrera A.J. Tyler-Kabara E.C. Boninger M.L. Collinger J.L. Gaunt R.A. A brain-computer interface that evokes tactile sensations improves robotic arm control.Science. 2021; 372: 831-836Crossref PubMed Scopus (58) Google Scholar In another study, an implantable cortical interface was employed for high-performance brain-to-text communication via imagined handwriting long after motor function was lost.6Willett F.R. Avansino D.T. Hochberg L.R. Henderson J.M. Shenoy K.V. High-performance brain-to-text communication via handwriting.Nature. 2021; 593: 249-254Crossref PubMed Scopus (86) Google Scholar Besides restoration of motor and cognitive functions, neuroprosthetics have also successfully restored sensory function, e.g., in the auditory domain using cochlear implants.7Macherey O. Carlyon R.P. Cochlear implants.Curr. Biol. 2014; 24: R878-R884Abstract Full Text Full Text PDF PubMed Scopus (42) Google Scholar Similarly, simple vision could be restored using retinal implants,8Zrenner E. Will retinal implants restore vision?.Science. 2002; 295: 1022-1025Crossref PubMed Scopus (627) Google Scholar but restoration of more detailed visual perception was challenging due to the intricate spatiotemporal patterns of retinal or optic nerve activity that encode such perception. Building on the postulate that “every good regulator of a system must be a model of that system”,9Conant R.C. Ross Ashby W. Every good regulator of a system must be a model of that system.Int. J. Syst. Sci. 1970; 1: 89-97Crossref Scopus (635) Google Scholar Romeni et al. (2021)1Romeni S. Zoccolan D. Micera S. A machine learning framework to optimize optic nerve electrical stimulation for vision restoration.Patterns. 2021; 2https://doi.org/10.1016/j.patter.2021.100286Abstract Full Text Full Text PDF Scopus (3) Google Scholar created an artificial model of the visual system by capitalizing on a remarkable property of convolutional neural networks (CNNs). When such artificial brain networks are trained to classify images, the resulting model turns out to be highly predictive of neural responses of mid-level visual areas (e.g., V4) of the brain’s ventral stream.10Yamins D.L. Hong H. Cadieu C.F. Solomon E.A. Seibert D. DiCarlo J.J. Performance-optimized hierarchical models predict neural responses in higher visual cortex.Proc. Natl. Acad. Sci. USA. 2014; 111: 8619-8624Crossref PubMed Scopus (716) Google Scholar Importantly, this type of model can be pre-trained. Then, using the resulting rich artificial neuronal model of the visual system, inputs to the network could be optimized, representing electrical stimulation of the optic nerve that best activated an abstract cortical layer coding for the object whose sensory input was to be enhanced. Psychophysical data exhibiting large inter-subject and within-subject variabilities were obtained with healthy human volunteers. Here, the authors showed that the performance of their proposed framework was in general comparable to the healthy volunteers’ performance and even exceeded it in easy visual classification tasks. While the approach is promising, a few key issues remain to be resolved. The presented technique must be subject to in vivo validation. Furthermore, optimization of stimulation parameters is currently performed on an image-by-image basis and thus cannot be performed in real time. In the future, a continuous mapping from video recordings to optic nerve stimulation parameters will be necessary for restoration of dynamic vision. Regardless of these obstacles, it is conceivable that neuroprosthetics of the future will broadly use artificial brain networks to increase the scope of interaction with the human brain. In this context, however, implementation of bidirectional BCIs or neuroprosthetics that merge an artificial and biological cognitive system in a hybrid mind raises a number of neuroethical questions—some of which are still not fully charted.11Soekadar S.R. Chandler J. Ienca M. Bublitz C. On the verge of the hybrid mind.Morals & Machines. 2021; 1: 30-43Crossref Google Scholar This research is supported in part by the European Research Council (ERC) under the project NGBMI ( 759370 ), ERA-NET Neuron under the project HYBRIDMIND ( 01GP2121B ), and the Einstein Stiftung Berlin . A machine learning framework to optimize optic nerve electrical stimulation for vision restorationRomeni et al.PatternsJune 16, 2021In BriefWe formulated a computational framework for the optimization of optic nerve stimulation patterns. We have implemented a model of the primate visual system, and an algorithm that allows the evolution of an optic nerve stimulation protocol that induces activation corresponding to natural visual stimuli in a given brain region and, consequently, a specified visual sensation. This could pave the way for novel machine-learning-based optimization of optic nerve stimulation to produce naturalistic sensations in blind patients. Full-Text PDF Open Access" @default.
- W3183060718 created "2021-07-19" @default.
- W3183060718 creator A5034170969 @default.
- W3183060718 creator A5042255270 @default.
- W3183060718 creator A5063966184 @default.
- W3183060718 date "2021-07-01" @default.
- W3183060718 modified "2023-10-08" @default.
- W3183060718 title "Advancing sensory neuroprosthetics using artificial brain networks" @default.
- W3183060718 cites W1980623242 @default.
- W3183060718 cites W2058616551 @default.
- W3183060718 cites W2341256599 @default.
- W3183060718 cites W2559904797 @default.
- W3183060718 cites W2603380332 @default.
- W3183060718 cites W3161143221 @default.
- W3183060718 cites W3161343553 @default.
- W3183060718 cites W3168356731 @default.
- W3183060718 cites W4206672610 @default.
- W3183060718 cites W4237718205 @default.
- W3183060718 cites W4252113900 @default.
- W3183060718 doi "https://doi.org/10.1016/j.patter.2021.100304" @default.
- W3183060718 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8276008" @default.
- W3183060718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34286308" @default.
- W3183060718 hasPublicationYear "2021" @default.
- W3183060718 type Work @default.
- W3183060718 sameAs 3183060718 @default.
- W3183060718 citedByCount "2" @default.
- W3183060718 countsByYear W31830607182023 @default.
- W3183060718 crossrefType "journal-article" @default.
- W3183060718 hasAuthorship W3183060718A5034170969 @default.
- W3183060718 hasAuthorship W3183060718A5042255270 @default.
- W3183060718 hasAuthorship W3183060718A5063966184 @default.
- W3183060718 hasBestOaLocation W31830607181 @default.
- W3183060718 hasConcept C154945302 @default.
- W3183060718 hasConcept C15744967 @default.
- W3183060718 hasConcept C168451700 @default.
- W3183060718 hasConcept C169760540 @default.
- W3183060718 hasConcept C173201364 @default.
- W3183060718 hasConcept C188147891 @default.
- W3183060718 hasConcept C197525751 @default.
- W3183060718 hasConcept C41008148 @default.
- W3183060718 hasConcept C522805319 @default.
- W3183060718 hasConcept C94487597 @default.
- W3183060718 hasConceptScore W3183060718C154945302 @default.
- W3183060718 hasConceptScore W3183060718C15744967 @default.
- W3183060718 hasConceptScore W3183060718C168451700 @default.
- W3183060718 hasConceptScore W3183060718C169760540 @default.
- W3183060718 hasConceptScore W3183060718C173201364 @default.
- W3183060718 hasConceptScore W3183060718C188147891 @default.
- W3183060718 hasConceptScore W3183060718C197525751 @default.
- W3183060718 hasConceptScore W3183060718C41008148 @default.
- W3183060718 hasConceptScore W3183060718C522805319 @default.
- W3183060718 hasConceptScore W3183060718C94487597 @default.
- W3183060718 hasFunder F4320323688 @default.
- W3183060718 hasFunder F4320334678 @default.
- W3183060718 hasIssue "7" @default.
- W3183060718 hasLocation W31830607181 @default.
- W3183060718 hasLocation W31830607182 @default.
- W3183060718 hasOpenAccess W3183060718 @default.
- W3183060718 hasPrimaryLocation W31830607181 @default.
- W3183060718 hasRelatedWork W1851784879 @default.
- W3183060718 hasRelatedWork W2004908132 @default.
- W3183060718 hasRelatedWork W2077630355 @default.
- W3183060718 hasRelatedWork W2082255253 @default.
- W3183060718 hasRelatedWork W2331193345 @default.
- W3183060718 hasRelatedWork W2905505558 @default.
- W3183060718 hasRelatedWork W3183060718 @default.
- W3183060718 hasRelatedWork W4377089470 @default.
- W3183060718 hasRelatedWork W1667537225 @default.
- W3183060718 hasRelatedWork W2764450791 @default.
- W3183060718 hasVolume "2" @default.
- W3183060718 isParatext "false" @default.
- W3183060718 isRetracted "false" @default.
- W3183060718 magId "3183060718" @default.
- W3183060718 workType "article" @default.