Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183109142> ?p ?o ?g. }
- W3183109142 endingPage "119486" @default.
- W3183109142 startingPage "119486" @default.
- W3183109142 abstract "Tropical forest degradation makes a major contribution to greenhouse gas emission. Crown width (CW) is one of the important predictors in forest growth and yield models that provide basic data for assessment of forest degradation. Precise method of estimating tree crown for two tropical tree species (Dacrydium pierrei Hickel and Podocarpus imbricatus Bl), which are the major species in the degraded coniferous mixed forests in the tropical China, is necessary. These forests play a pivotal role in maintaining ecosystem functions, but are under the threat of severe degradation in recent years, and none of the studies has provided focus to these forests. We developed a nonlinear mixed-effects CW model using the permanent sample plot data acquired from D. pierrei and P. imbricatus forests. A number of tree- and stand-level variables were evaluated for their potential contribution to the CW variations, and included only highly significant ones in the model. The random effects at the levels of both sample plots and stands with different site quality class (blocks) were included in the CW model through mixed-effect modeling, and resulting model is therefore a two-level nonlinear mixed-effects model. Leave-one-out cross-validation was applied to evaluate the models. Among several predictor variables, diameter at breast height (DBH), height-to-DBH ratio (HDR), and height to crown base (HCB) contributed relatively highly to the CW variations. Dummy variable was introduced into the model to differentiate CW variations of two tree species. Correlations of CW and predictor variables significantly decreased when random effects at both the block and sample plot levels were included. We calibrated the nonlinear mixed effects CW model following the empirical best linear unbiased prediction theory, using four strategies of selecting CW trees per sample plot (largest, medium-sized, smallest trees and randomly selected trees) and fifteen sample sizes (one to fifteen trees). The prediction accuracy increased with increasing number of trees per sample plot, except the smallest trees, but the largest increase occurred with three largest trees used in calibration. This article emphasized more on modeling methodology, which can be applied to construct CW models for any forest elsewhere including degraded forest in the tropics." @default.
- W3183109142 created "2021-07-19" @default.
- W3183109142 creator A5023294450 @default.
- W3183109142 creator A5035581017 @default.
- W3183109142 creator A5039671101 @default.
- W3183109142 creator A5052672004 @default.
- W3183109142 creator A5062983920 @default.
- W3183109142 creator A5069044551 @default.
- W3183109142 creator A5077107160 @default.
- W3183109142 creator A5087729203 @default.
- W3183109142 date "2021-10-01" @default.
- W3183109142 modified "2023-10-02" @default.
- W3183109142 title "Estimating crown width in degraded forest: A two-level nonlinear mixed-effects crown width model for Dacrydium pierrei and Podocarpus imbricatus in tropical China" @default.
- W3183109142 cites W1599428825 @default.
- W3183109142 cites W1973803313 @default.
- W3183109142 cites W1975790870 @default.
- W3183109142 cites W1982886002 @default.
- W3183109142 cites W1989379623 @default.
- W3183109142 cites W1993147091 @default.
- W3183109142 cites W1994322763 @default.
- W3183109142 cites W1997485073 @default.
- W3183109142 cites W2007033047 @default.
- W3183109142 cites W2016358184 @default.
- W3183109142 cites W2018985705 @default.
- W3183109142 cites W2026616641 @default.
- W3183109142 cites W2026885798 @default.
- W3183109142 cites W2032882229 @default.
- W3183109142 cites W2034401629 @default.
- W3183109142 cites W2040966598 @default.
- W3183109142 cites W2042814090 @default.
- W3183109142 cites W2067361792 @default.
- W3183109142 cites W2101030579 @default.
- W3183109142 cites W2101464256 @default.
- W3183109142 cites W2105447517 @default.
- W3183109142 cites W2126882313 @default.
- W3183109142 cites W2150440248 @default.
- W3183109142 cites W2160310055 @default.
- W3183109142 cites W2168302836 @default.
- W3183109142 cites W2168423648 @default.
- W3183109142 cites W2173723867 @default.
- W3183109142 cites W2194590177 @default.
- W3183109142 cites W2277579754 @default.
- W3183109142 cites W2315794277 @default.
- W3183109142 cites W2327274084 @default.
- W3183109142 cites W2418109741 @default.
- W3183109142 cites W2543475316 @default.
- W3183109142 cites W2560872651 @default.
- W3183109142 cites W2576700356 @default.
- W3183109142 cites W2742478052 @default.
- W3183109142 cites W2810919118 @default.
- W3183109142 cites W3081467541 @default.
- W3183109142 doi "https://doi.org/10.1016/j.foreco.2021.119486" @default.
- W3183109142 hasPublicationYear "2021" @default.
- W3183109142 type Work @default.
- W3183109142 sameAs 3183109142 @default.
- W3183109142 citedByCount "12" @default.
- W3183109142 countsByYear W31831091422022 @default.
- W3183109142 countsByYear W31831091422023 @default.
- W3183109142 crossrefType "journal-article" @default.
- W3183109142 hasAuthorship W3183109142A5023294450 @default.
- W3183109142 hasAuthorship W3183109142A5035581017 @default.
- W3183109142 hasAuthorship W3183109142A5039671101 @default.
- W3183109142 hasAuthorship W3183109142A5052672004 @default.
- W3183109142 hasAuthorship W3183109142A5062983920 @default.
- W3183109142 hasAuthorship W3183109142A5069044551 @default.
- W3183109142 hasAuthorship W3183109142A5077107160 @default.
- W3183109142 hasAuthorship W3183109142A5087729203 @default.
- W3183109142 hasConcept C105795698 @default.
- W3183109142 hasConcept C110872660 @default.
- W3183109142 hasConcept C16012445 @default.
- W3183109142 hasConcept C18903297 @default.
- W3183109142 hasConcept C199343813 @default.
- W3183109142 hasConcept C205649164 @default.
- W3183109142 hasConcept C2777532741 @default.
- W3183109142 hasConcept C2778400979 @default.
- W3183109142 hasConcept C2780618852 @default.
- W3183109142 hasConcept C33923547 @default.
- W3183109142 hasConcept C39432304 @default.
- W3183109142 hasConcept C54286561 @default.
- W3183109142 hasConcept C58330081 @default.
- W3183109142 hasConcept C71924100 @default.
- W3183109142 hasConcept C73935091 @default.
- W3183109142 hasConcept C86803240 @default.
- W3183109142 hasConcept C97137747 @default.
- W3183109142 hasConceptScore W3183109142C105795698 @default.
- W3183109142 hasConceptScore W3183109142C110872660 @default.
- W3183109142 hasConceptScore W3183109142C16012445 @default.
- W3183109142 hasConceptScore W3183109142C18903297 @default.
- W3183109142 hasConceptScore W3183109142C199343813 @default.
- W3183109142 hasConceptScore W3183109142C205649164 @default.
- W3183109142 hasConceptScore W3183109142C2777532741 @default.
- W3183109142 hasConceptScore W3183109142C2778400979 @default.
- W3183109142 hasConceptScore W3183109142C2780618852 @default.
- W3183109142 hasConceptScore W3183109142C33923547 @default.
- W3183109142 hasConceptScore W3183109142C39432304 @default.
- W3183109142 hasConceptScore W3183109142C54286561 @default.
- W3183109142 hasConceptScore W3183109142C58330081 @default.
- W3183109142 hasConceptScore W3183109142C71924100 @default.