Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183126223> ?p ?o ?g. }
- W3183126223 abstract "The state-of-the-art deep learning-based object recognition YOLO algorithm and object tracking DeepSORT algorithm are combined to analyze digital images from fluid dynamic simulations of multi-core emulsions and soft flowing crystals and to track moving droplets within these complex flows. The YOLO network was trained to recognize the droplets with synthetically prepared data, thereby bypassing the labor-intensive data acquisition process. In both applications, the trained YOLO + DeepSORT procedure performs with high accuracy on the real data from the fluid simulations, with low error levels in the inferred trajectories of the droplets and independently computed ground truth. Moreover, using commonly used desktop GPUs, the developed application is capable of analyzing data at speeds that exceed the typical image acquisition rates of digital cameras (30 fps), opening the interesting prospect of realizing a low-cost and practical tool to study systems with many moving objects, mostly but not exclusively, biological ones. Besides its practical applications, the procedure presented here marks the first step towards the automatic extraction of effective equations of motion of many-body soft flowing systems." @default.
- W3183126223 created "2021-07-19" @default.
- W3183126223 creator A5011404275 @default.
- W3183126223 creator A5024826612 @default.
- W3183126223 creator A5040389978 @default.
- W3183126223 creator A5054613380 @default.
- W3183126223 creator A5075643472 @default.
- W3183126223 creator A5086032634 @default.
- W3183126223 date "2021-08-21" @default.
- W3183126223 modified "2023-09-27" @default.
- W3183126223 title "Tracking droplets in soft granular flows with deep learning techniques" @default.
- W3183126223 cites W1973893299 @default.
- W3183126223 cites W1981425595 @default.
- W3183126223 cites W1982933896 @default.
- W3183126223 cites W2015410655 @default.
- W3183126223 cites W2015630498 @default.
- W3183126223 cites W2028293827 @default.
- W3183126223 cites W2031489346 @default.
- W3183126223 cites W2045621032 @default.
- W3183126223 cites W2067035389 @default.
- W3183126223 cites W2072063763 @default.
- W3183126223 cites W2083368349 @default.
- W3183126223 cites W2084317309 @default.
- W3183126223 cites W2088617194 @default.
- W3183126223 cites W2102318609 @default.
- W3183126223 cites W2110902887 @default.
- W3183126223 cites W2120451085 @default.
- W3183126223 cites W2143969246 @default.
- W3183126223 cites W2168681026 @default.
- W3183126223 cites W2277514911 @default.
- W3183126223 cites W2295001676 @default.
- W3183126223 cites W2469756107 @default.
- W3183126223 cites W2514087538 @default.
- W3183126223 cites W2555335304 @default.
- W3183126223 cites W2593841121 @default.
- W3183126223 cites W2594620817 @default.
- W3183126223 cites W2603203130 @default.
- W3183126223 cites W2604696884 @default.
- W3183126223 cites W2762434760 @default.
- W3183126223 cites W2764130664 @default.
- W3183126223 cites W2765523472 @default.
- W3183126223 cites W2889161318 @default.
- W3183126223 cites W2919115771 @default.
- W3183126223 cites W2919873176 @default.
- W3183126223 cites W2923537029 @default.
- W3183126223 cites W2936901535 @default.
- W3183126223 cites W2941037212 @default.
- W3183126223 cites W2943712139 @default.
- W3183126223 cites W2948645277 @default.
- W3183126223 cites W2963037989 @default.
- W3183126223 cites W2963084012 @default.
- W3183126223 cites W2999044305 @default.
- W3183126223 cites W3003555818 @default.
- W3183126223 cites W3011687409 @default.
- W3183126223 cites W3019556205 @default.
- W3183126223 cites W3035558131 @default.
- W3183126223 cites W3101127133 @default.
- W3183126223 cites W3102944822 @default.
- W3183126223 cites W3104884550 @default.
- W3183126223 cites W3105354154 @default.
- W3183126223 cites W3110702731 @default.
- W3183126223 cites W3111548871 @default.
- W3183126223 cites W3120806656 @default.
- W3183126223 cites W3132280960 @default.
- W3183126223 cites W3133611053 @default.
- W3183126223 cites W4239647010 @default.
- W3183126223 cites W4254345639 @default.
- W3183126223 cites W639708223 @default.
- W3183126223 doi "https://doi.org/10.1140/epjp/s13360-021-01849-3" @default.
- W3183126223 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8380117" @default.
- W3183126223 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34458055" @default.
- W3183126223 hasPublicationYear "2021" @default.
- W3183126223 type Work @default.
- W3183126223 sameAs 3183126223 @default.
- W3183126223 citedByCount "7" @default.
- W3183126223 countsByYear W31831262232022 @default.
- W3183126223 countsByYear W31831262232023 @default.
- W3183126223 crossrefType "journal-article" @default.
- W3183126223 hasAuthorship W3183126223A5011404275 @default.
- W3183126223 hasAuthorship W3183126223A5024826612 @default.
- W3183126223 hasAuthorship W3183126223A5040389978 @default.
- W3183126223 hasAuthorship W3183126223A5054613380 @default.
- W3183126223 hasAuthorship W3183126223A5075643472 @default.
- W3183126223 hasAuthorship W3183126223A5086032634 @default.
- W3183126223 hasBestOaLocation W31831262231 @default.
- W3183126223 hasConcept C108583219 @default.
- W3183126223 hasConcept C111919701 @default.
- W3183126223 hasConcept C146849305 @default.
- W3183126223 hasConcept C154945302 @default.
- W3183126223 hasConcept C15744967 @default.
- W3183126223 hasConcept C163985040 @default.
- W3183126223 hasConcept C19417346 @default.
- W3183126223 hasConcept C2775936607 @default.
- W3183126223 hasConcept C2781238097 @default.
- W3183126223 hasConcept C31972630 @default.
- W3183126223 hasConcept C41008148 @default.
- W3183126223 hasConcept C98045186 @default.
- W3183126223 hasConceptScore W3183126223C108583219 @default.
- W3183126223 hasConceptScore W3183126223C111919701 @default.
- W3183126223 hasConceptScore W3183126223C146849305 @default.