Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183129439> ?p ?o ?g. }
- W3183129439 endingPage "14" @default.
- W3183129439 startingPage "1" @default.
- W3183129439 abstract "For various remote sensing objects, the current detection framework based on a single detection pipeline fails to provide satisfactory detection accuracy. In order to further improve the object recognition ability of the detection model, this article introduces the effective “multiexpert” mechanism into the field of remote sensing object detection and then constructs a multiexpert detection network (MEDNet). In this model, we first construct multiple feature pyramids (MFPs) to replace the traditional single feature pyramid to enrich the semantic representation ability of the model. Then, we equip multiple detection experts (MDEs) to leverage multiple kinds of features from MFP to perform different semantic predictions. As the first CNN-based multiexpert detection model for remote sensing images, we tailor a loss distance-based k-experts clustering (LD-kEC) strategy to assign training samples to different detection experts in an unsupervised fashion. By this strategy, we can directly use the existing remote sensing dataset without expert labels for end-to-end training of our multiexpert model. The experimental results prove that the proposed multiexpert-based detector can indeed significantly improve the object detection performance for remote sensing images." @default.
- W3183129439 created "2021-07-19" @default.
- W3183129439 creator A5012438499 @default.
- W3183129439 creator A5055643899 @default.
- W3183129439 creator A5060042752 @default.
- W3183129439 creator A5087705980 @default.
- W3183129439 creator A5087786852 @default.
- W3183129439 date "2022-01-01" @default.
- W3183129439 modified "2023-10-12" @default.
- W3183129439 title "MEDNet: Multiexpert Detection Network With Unsupervised Clustering of Training Samples" @default.
- W3183129439 cites W1128809682 @default.
- W3183129439 cites W1536680647 @default.
- W3183129439 cites W1644644236 @default.
- W3183129439 cites W1932624639 @default.
- W3183129439 cites W2000396952 @default.
- W3183129439 cites W2011430131 @default.
- W3183129439 cites W2031489346 @default.
- W3183129439 cites W2043317715 @default.
- W3183129439 cites W2067191022 @default.
- W3183129439 cites W2109255472 @default.
- W3183129439 cites W2132377940 @default.
- W3183129439 cites W2138730338 @default.
- W3183129439 cites W2153233077 @default.
- W3183129439 cites W2155511848 @default.
- W3183129439 cites W2168356304 @default.
- W3183129439 cites W2194775991 @default.
- W3183129439 cites W2241675565 @default.
- W3183129439 cites W2288122362 @default.
- W3183129439 cites W2319040573 @default.
- W3183129439 cites W2343614814 @default.
- W3183129439 cites W2512351403 @default.
- W3183129439 cites W2529970009 @default.
- W3183129439 cites W2554616628 @default.
- W3183129439 cites W2565639579 @default.
- W3183129439 cites W2612624696 @default.
- W3183129439 cites W2743635406 @default.
- W3183129439 cites W2765739551 @default.
- W3183129439 cites W2779335303 @default.
- W3183129439 cites W2800388963 @default.
- W3183129439 cites W2883712957 @default.
- W3183129439 cites W2910778976 @default.
- W3183129439 cites W2934318214 @default.
- W3183129439 cites W2948329096 @default.
- W3183129439 cites W2952565170 @default.
- W3183129439 cites W2962749812 @default.
- W3183129439 cites W2963150697 @default.
- W3183129439 cites W2963254338 @default.
- W3183129439 cites W2963287324 @default.
- W3183129439 cites W2963351448 @default.
- W3183129439 cites W2963516811 @default.
- W3183129439 cites W2963566126 @default.
- W3183129439 cites W2963849369 @default.
- W3183129439 cites W2964444661 @default.
- W3183129439 cites W2964979676 @default.
- W3183129439 cites W2965318645 @default.
- W3183129439 cites W2972395464 @default.
- W3183129439 cites W2973030851 @default.
- W3183129439 cites W2975233290 @default.
- W3183129439 cites W2988698702 @default.
- W3183129439 cites W2992240579 @default.
- W3183129439 cites W2999452014 @default.
- W3183129439 cites W3004561134 @default.
- W3183129439 cites W3015331846 @default.
- W3183129439 cites W3033215168 @default.
- W3183129439 cites W3041014620 @default.
- W3183129439 cites W3047443805 @default.
- W3183129439 cites W3048631361 @default.
- W3183129439 cites W3098218837 @default.
- W3183129439 cites W3106244377 @default.
- W3183129439 cites W3124566001 @default.
- W3183129439 cites W3125372245 @default.
- W3183129439 cites W3201797941 @default.
- W3183129439 doi "https://doi.org/10.1109/tgrs.2021.3093556" @default.
- W3183129439 hasPublicationYear "2022" @default.
- W3183129439 type Work @default.
- W3183129439 sameAs 3183129439 @default.
- W3183129439 citedByCount "4" @default.
- W3183129439 countsByYear W31831294392022 @default.
- W3183129439 countsByYear W31831294392023 @default.
- W3183129439 crossrefType "journal-article" @default.
- W3183129439 hasAuthorship W3183129439A5012438499 @default.
- W3183129439 hasAuthorship W3183129439A5055643899 @default.
- W3183129439 hasAuthorship W3183129439A5060042752 @default.
- W3183129439 hasAuthorship W3183129439A5087705980 @default.
- W3183129439 hasAuthorship W3183129439A5087786852 @default.
- W3183129439 hasConcept C120665830 @default.
- W3183129439 hasConcept C121332964 @default.
- W3183129439 hasConcept C138885662 @default.
- W3183129439 hasConcept C142575187 @default.
- W3183129439 hasConcept C153083717 @default.
- W3183129439 hasConcept C153180895 @default.
- W3183129439 hasConcept C154945302 @default.
- W3183129439 hasConcept C199360897 @default.
- W3183129439 hasConcept C2776151529 @default.
- W3183129439 hasConcept C2776401178 @default.
- W3183129439 hasConcept C41008148 @default.
- W3183129439 hasConcept C41895202 @default.
- W3183129439 hasConcept C43521106 @default.