Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183178309> ?p ?o ?g. }
- W3183178309 endingPage "710" @default.
- W3183178309 startingPage "710" @default.
- W3183178309 abstract "Effective monitoring of soil moisture (θ) by non-destructive means is important for crop irrigation management. Soil bulk density (ρ) is a major factor that affects potential application of θ estimation models using remotely-sensed data. However, few researchers have focused on and quantified the effect of ρ on spectral reflectance of soil moisture with different soil textures. Therefore, we quantified influences of soil bulk density and texture on θ, and evaluated the performance from combining spectral feature parameters with the artificial neural network (ANN) algorithm to estimate θ. The conclusions are as follows: (1) for sandy soil, the spectral feature parameters most strongly correlated with θ were Sg (sum of reflectance in green edge) and A_Depth780–970 (absorption depth at 780–970 nm). (2) The θ had a significant correlation to the R900–970 (maximum reflectance at 900–970 nm) and S900–970 (sum of reflectance at 900–970 nm) for loamy soil. (3) The best spectral feature parameters to estimate θ were R900–970 and S900–970 for clay loam soil, respectively. (4) The R900–970 and S900–970 showed higher accuracy in estimating θ for sandy loam soil. The R900–970 and S900–970 achieved the best estimation accuracy for all four soil textures. Combining spectral feature parameters with ANN produced higher accuracy in estimating θ (R2 = 0.95 and RMSE = 0.03 m3 m−3) for the four soil textures." @default.
- W3183178309 created "2021-08-02" @default.
- W3183178309 creator A5027100668 @default.
- W3183178309 creator A5033865224 @default.
- W3183178309 creator A5051761403 @default.
- W3183178309 creator A5058637832 @default.
- W3183178309 creator A5090269831 @default.
- W3183178309 date "2021-07-28" @default.
- W3183178309 modified "2023-09-26" @default.
- W3183178309 title "Influences of Soil Bulk Density and Texture on Estimation of Surface Soil Moisture Using Spectral Feature Parameters and an Artificial Neural Network Algorithm" @default.
- W3183178309 cites W1033850845 @default.
- W3183178309 cites W1656198309 @default.
- W3183178309 cites W1700157456 @default.
- W3183178309 cites W1830092100 @default.
- W3183178309 cites W1873607511 @default.
- W3183178309 cites W1978358290 @default.
- W3183178309 cites W1988369902 @default.
- W3183178309 cites W1991376697 @default.
- W3183178309 cites W1997116648 @default.
- W3183178309 cites W2002687396 @default.
- W3183178309 cites W2005185481 @default.
- W3183178309 cites W2013869812 @default.
- W3183178309 cites W2019038438 @default.
- W3183178309 cites W2021389390 @default.
- W3183178309 cites W2028844900 @default.
- W3183178309 cites W2030178855 @default.
- W3183178309 cites W2033502362 @default.
- W3183178309 cites W2036961725 @default.
- W3183178309 cites W2037543817 @default.
- W3183178309 cites W2039908035 @default.
- W3183178309 cites W2040125657 @default.
- W3183178309 cites W2043359577 @default.
- W3183178309 cites W2045287632 @default.
- W3183178309 cites W2049952579 @default.
- W3183178309 cites W2068371905 @default.
- W3183178309 cites W2068562538 @default.
- W3183178309 cites W2077792299 @default.
- W3183178309 cites W2081500645 @default.
- W3183178309 cites W2082931346 @default.
- W3183178309 cites W2083955053 @default.
- W3183178309 cites W2097936600 @default.
- W3183178309 cites W2105782107 @default.
- W3183178309 cites W2110172573 @default.
- W3183178309 cites W2111201967 @default.
- W3183178309 cites W2132531242 @default.
- W3183178309 cites W2143390819 @default.
- W3183178309 cites W2143513740 @default.
- W3183178309 cites W2155782014 @default.
- W3183178309 cites W2157980636 @default.
- W3183178309 cites W2192767806 @default.
- W3183178309 cites W2196579671 @default.
- W3183178309 cites W2230229588 @default.
- W3183178309 cites W2599868771 @default.
- W3183178309 cites W2767689241 @default.
- W3183178309 cites W2792220218 @default.
- W3183178309 cites W2794883803 @default.
- W3183178309 cites W2801951573 @default.
- W3183178309 cites W2885647125 @default.
- W3183178309 cites W2885978339 @default.
- W3183178309 cites W2901363773 @default.
- W3183178309 cites W2917042745 @default.
- W3183178309 cites W2973218737 @default.
- W3183178309 cites W2978354175 @default.
- W3183178309 cites W3003889422 @default.
- W3183178309 cites W3008544604 @default.
- W3183178309 cites W3015987273 @default.
- W3183178309 cites W3016704842 @default.
- W3183178309 doi "https://doi.org/10.3390/agriculture11080710" @default.
- W3183178309 hasPublicationYear "2021" @default.
- W3183178309 type Work @default.
- W3183178309 sameAs 3183178309 @default.
- W3183178309 citedByCount "5" @default.
- W3183178309 countsByYear W31831783092022 @default.
- W3183178309 countsByYear W31831783092023 @default.
- W3183178309 crossrefType "journal-article" @default.
- W3183178309 hasAuthorship W3183178309A5027100668 @default.
- W3183178309 hasAuthorship W3183178309A5033865224 @default.
- W3183178309 hasAuthorship W3183178309A5051761403 @default.
- W3183178309 hasAuthorship W3183178309A5058637832 @default.
- W3183178309 hasAuthorship W3183178309A5090269831 @default.
- W3183178309 hasBestOaLocation W31831783091 @default.
- W3183178309 hasConcept C113578266 @default.
- W3183178309 hasConcept C115961682 @default.
- W3183178309 hasConcept C127313418 @default.
- W3183178309 hasConcept C138885662 @default.
- W3183178309 hasConcept C154945302 @default.
- W3183178309 hasConcept C159390177 @default.
- W3183178309 hasConcept C159750122 @default.
- W3183178309 hasConcept C159985019 @default.
- W3183178309 hasConcept C175963888 @default.
- W3183178309 hasConcept C176864760 @default.
- W3183178309 hasConcept C187320778 @default.
- W3183178309 hasConcept C192562407 @default.
- W3183178309 hasConcept C199289684 @default.
- W3183178309 hasConcept C24939127 @default.
- W3183178309 hasConcept C2776401178 @default.
- W3183178309 hasConcept C2781195486 @default.
- W3183178309 hasConcept C33923547 @default.