Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183198325> ?p ?o ?g. }
- W3183198325 endingPage "106588" @default.
- W3183198325 startingPage "106575" @default.
- W3183198325 abstract "Cardiovascular diseases are considered as the most life-threatening syndromes with the highest mortality rate globally. Over a period of time, they have become very common and are now overstretching the healthcare systems of countries. The major factors of cardiovascular diseases are high blood pressure, family history, stress, age, gender, cholesterol, Body Mass Index (BMI), and unhealthy lifestyle. Based on these factors, researchers have proposed various approaches for early diagnosis. However, the accuracy of proposed techniques and approaches needs certain improvements due to the inherent criticality and life threatening risks of cardiovascular diseases. In this article, a MaLCaDD (Machine Learning based Cardiovascular Disease Diagnosis) framework is proposed for the effective prediction of cardiovascular diseases with high precision. Particularly, the framework first deals with the missing values (via mean replacement technique) and data imbalance (via Synthetic Minority Over-sampling Technique - SMOTE). Subsequently, Feature Importance technique is utilized for feature selection. Finally, an ensemble of Logistic Regression and K-Nearest Neighbor (KNN) classifiers is proposed for prediction with higher accuracy. The validation of framework is performed through three benchmark datasets (i.e. Framingham, Heart Disease and Cleveland) and the accuracies of 99.1%, 98.0% and 95.5 % are achieved respectively. Finally, the comparative analysis proves that MaLCaDD predictions are more accurate (with reduced set of features) as compared to the existing state-of-the-art approaches. Therefore, MaLCaDD is highly reliable and can be applied in real environment for the early diagnosis of cardiovascular diseases." @default.
- W3183198325 created "2021-08-02" @default.
- W3183198325 creator A5026526820 @default.
- W3183198325 creator A5040585772 @default.
- W3183198325 creator A5045766368 @default.
- W3183198325 creator A5068800533 @default.
- W3183198325 creator A5073491594 @default.
- W3183198325 creator A5076946760 @default.
- W3183198325 date "2021-01-01" @default.
- W3183198325 modified "2023-10-06" @default.
- W3183198325 title "An Integrated Machine Learning Framework for Effective Prediction of Cardiovascular Diseases" @default.
- W3183198325 cites W1544620651 @default.
- W3183198325 cites W1977098485 @default.
- W3183198325 cites W1982080117 @default.
- W3183198325 cites W1990480090 @default.
- W3183198325 cites W2004537220 @default.
- W3183198325 cites W2109980155 @default.
- W3183198325 cites W2238604197 @default.
- W3183198325 cites W2296490552 @default.
- W3183198325 cites W2548593345 @default.
- W3183198325 cites W2592717708 @default.
- W3183198325 cites W2743192136 @default.
- W3183198325 cites W2768092558 @default.
- W3183198325 cites W2782996755 @default.
- W3183198325 cites W2784249848 @default.
- W3183198325 cites W2791915062 @default.
- W3183198325 cites W2792901297 @default.
- W3183198325 cites W2796884049 @default.
- W3183198325 cites W2798381092 @default.
- W3183198325 cites W2807121762 @default.
- W3183198325 cites W2890717576 @default.
- W3183198325 cites W2894543465 @default.
- W3183198325 cites W2900374423 @default.
- W3183198325 cites W2901800039 @default.
- W3183198325 cites W2903778972 @default.
- W3183198325 cites W2907465059 @default.
- W3183198325 cites W2908604688 @default.
- W3183198325 cites W2908828888 @default.
- W3183198325 cites W2941927753 @default.
- W3183198325 cites W2945470355 @default.
- W3183198325 cites W2955201199 @default.
- W3183198325 cites W2964462869 @default.
- W3183198325 cites W2967912576 @default.
- W3183198325 cites W2977597934 @default.
- W3183198325 cites W2994870350 @default.
- W3183198325 cites W3001157157 @default.
- W3183198325 cites W3005648791 @default.
- W3183198325 cites W3006100806 @default.
- W3183198325 cites W3018828627 @default.
- W3183198325 cites W3128871205 @default.
- W3183198325 cites W3204286438 @default.
- W3183198325 cites W4246975677 @default.
- W3183198325 doi "https://doi.org/10.1109/access.2021.3098688" @default.
- W3183198325 hasPublicationYear "2021" @default.
- W3183198325 type Work @default.
- W3183198325 sameAs 3183198325 @default.
- W3183198325 citedByCount "28" @default.
- W3183198325 countsByYear W31831983252022 @default.
- W3183198325 countsByYear W31831983252023 @default.
- W3183198325 crossrefType "journal-article" @default.
- W3183198325 hasAuthorship W3183198325A5026526820 @default.
- W3183198325 hasAuthorship W3183198325A5040585772 @default.
- W3183198325 hasAuthorship W3183198325A5045766368 @default.
- W3183198325 hasAuthorship W3183198325A5068800533 @default.
- W3183198325 hasAuthorship W3183198325A5073491594 @default.
- W3183198325 hasAuthorship W3183198325A5076946760 @default.
- W3183198325 hasBestOaLocation W31831983251 @default.
- W3183198325 hasConcept C111815664 @default.
- W3183198325 hasConcept C11783203 @default.
- W3183198325 hasConcept C119857082 @default.
- W3183198325 hasConcept C124101348 @default.
- W3183198325 hasConcept C126322002 @default.
- W3183198325 hasConcept C13280743 @default.
- W3183198325 hasConcept C138885662 @default.
- W3183198325 hasConcept C148483581 @default.
- W3183198325 hasConcept C151956035 @default.
- W3183198325 hasConcept C154945302 @default.
- W3183198325 hasConcept C185798385 @default.
- W3183198325 hasConcept C205649164 @default.
- W3183198325 hasConcept C2776401178 @default.
- W3183198325 hasConcept C2779134260 @default.
- W3183198325 hasConcept C41008148 @default.
- W3183198325 hasConcept C41895202 @default.
- W3183198325 hasConcept C71924100 @default.
- W3183198325 hasConcept C84393581 @default.
- W3183198325 hasConceptScore W3183198325C111815664 @default.
- W3183198325 hasConceptScore W3183198325C11783203 @default.
- W3183198325 hasConceptScore W3183198325C119857082 @default.
- W3183198325 hasConceptScore W3183198325C124101348 @default.
- W3183198325 hasConceptScore W3183198325C126322002 @default.
- W3183198325 hasConceptScore W3183198325C13280743 @default.
- W3183198325 hasConceptScore W3183198325C138885662 @default.
- W3183198325 hasConceptScore W3183198325C148483581 @default.
- W3183198325 hasConceptScore W3183198325C151956035 @default.
- W3183198325 hasConceptScore W3183198325C154945302 @default.
- W3183198325 hasConceptScore W3183198325C185798385 @default.
- W3183198325 hasConceptScore W3183198325C205649164 @default.
- W3183198325 hasConceptScore W3183198325C2776401178 @default.