Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183249008> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3183249008 endingPage "1051" @default.
- W3183249008 startingPage "1051" @default.
- W3183249008 abstract "1051 Objectives: We aimed to identify distinct disease progression pathways in Parkinson’s disease (PD), making use of clinical and imaging features, towards improved understanding of disease and powering of clinical trials. In addition, we studies machine learning approaches to predict progression pathways from early (year 0 and 1) data. Methods: We studied 885 PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson’s Progressive Marker Initiative). We generated and analyzed 980 features, including Movement Disorder Society’s Unified Parkinson9s Disease Rating Scale (MDS-UPDRS) measures, a range of task/exam performances, socioeconomic/family histories, and radiomics features (RFs) extracted for each region-of-interest (ROI; left and right caudate as well as putamen) using our standardized SERA radiomics software. Segmentation of ROIs on DAT SPECT images were performed via MRI images. After performing cross-sectional clustering to identify disease subtypes (3 sub-clusters robustly identified in our prior work, namely i) mild, ii) intermediate, and ii) severe) for any given patient in any given year, we performed identification of optimal longitudinal pathways by applying a hybrid system (HS) including Principal Component Analysis (PCA) as a dimension reduction algorithm (DRA), and Hierarchical Agglomerative Clustering (HAC) as a clustering method, to the longitudinal dataset. To optimize the number of longitudinal trajectories (clusters), we applied the Elbow clustering evaluation method to our results (for a range of 2-9 longitudinal clusters/pathways) as generated by HSs including PCA+K-Means Algorithm (KMA) as well as PCA+HAC. Our optimized number of pathways were further confirmed by two other methods: Bayesian Information Criteria (BIC) and Calinski Harabatz Criteria (CHC) as applied on clustering results provided by KMA. Subsequently, prediction of the identified trajectories based on early years (data in year 0 and 1) was performed using multiple HSs including 16 DRAs coupled to 10 classifiers. Results: Our analysis revealed significant heterogeneity in disease progression. We identified 3 distinct progression trajectories. The pathways included those with (i,ii) disease escalation (2 pathways, 27% and 38% of patients) and (iii) stable disease (1 pathway, 35% of patient). For prediction from early year data (years 0 and 1), HSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier) resulted in accuracies of 78.4% and 79.2% respectively, while other HSs such as SNEA+Lib_SVM (Library for Support Vector Machines) and t_SNE (t-distributed Stochastic Neighbor Embedding)+NPNNC resulted in 76.5% and 76.1% respectively. Conclusions: We demonstrated that appropriate HS frameworks enabled identification of disease progression (3 distinct longitudinal trajectories) as well as robust prediction of disease progression in PD subjects." @default.
- W3183249008 created "2021-08-02" @default.
- W3183249008 creator A5021438906 @default.
- W3183249008 creator A5040861172 @default.
- W3183249008 creator A5049491814 @default.
- W3183249008 creator A5063110838 @default.
- W3183249008 date "2021-05-01" @default.
- W3183249008 modified "2023-09-26" @default.
- W3183249008 title "Longitudinal Clustering Analysis and Prediction of Parkinson’s Disease Progression" @default.
- W3183249008 hasPublicationYear "2021" @default.
- W3183249008 type Work @default.
- W3183249008 sameAs 3183249008 @default.
- W3183249008 citedByCount "0" @default.
- W3183249008 crossrefType "journal-article" @default.
- W3183249008 hasAuthorship W3183249008A5021438906 @default.
- W3183249008 hasAuthorship W3183249008A5040861172 @default.
- W3183249008 hasAuthorship W3183249008A5049491814 @default.
- W3183249008 hasAuthorship W3183249008A5063110838 @default.
- W3183249008 hasConcept C126322002 @default.
- W3183249008 hasConcept C142724271 @default.
- W3183249008 hasConcept C153180895 @default.
- W3183249008 hasConcept C154945302 @default.
- W3183249008 hasConcept C27438332 @default.
- W3183249008 hasConcept C2777895361 @default.
- W3183249008 hasConcept C2779714222 @default.
- W3183249008 hasConcept C41008148 @default.
- W3183249008 hasConcept C71924100 @default.
- W3183249008 hasConcept C73555534 @default.
- W3183249008 hasConcept C92835128 @default.
- W3183249008 hasConceptScore W3183249008C126322002 @default.
- W3183249008 hasConceptScore W3183249008C142724271 @default.
- W3183249008 hasConceptScore W3183249008C153180895 @default.
- W3183249008 hasConceptScore W3183249008C154945302 @default.
- W3183249008 hasConceptScore W3183249008C27438332 @default.
- W3183249008 hasConceptScore W3183249008C2777895361 @default.
- W3183249008 hasConceptScore W3183249008C2779714222 @default.
- W3183249008 hasConceptScore W3183249008C41008148 @default.
- W3183249008 hasConceptScore W3183249008C71924100 @default.
- W3183249008 hasConceptScore W3183249008C73555534 @default.
- W3183249008 hasConceptScore W3183249008C92835128 @default.
- W3183249008 hasLocation W31832490081 @default.
- W3183249008 hasOpenAccess W3183249008 @default.
- W3183249008 hasPrimaryLocation W31832490081 @default.
- W3183249008 hasRelatedWork W110078528 @default.
- W3183249008 hasRelatedWork W1605729173 @default.
- W3183249008 hasRelatedWork W2031250362 @default.
- W3183249008 hasRelatedWork W2035331647 @default.
- W3183249008 hasRelatedWork W2040319002 @default.
- W3183249008 hasRelatedWork W2415996721 @default.
- W3183249008 hasRelatedWork W2602184054 @default.
- W3183249008 hasRelatedWork W2688239542 @default.
- W3183249008 hasRelatedWork W2753159649 @default.
- W3183249008 hasRelatedWork W2889611173 @default.
- W3183249008 hasRelatedWork W2953778338 @default.
- W3183249008 hasRelatedWork W2979633009 @default.
- W3183249008 hasRelatedWork W2998463436 @default.
- W3183249008 hasRelatedWork W2999310302 @default.
- W3183249008 hasRelatedWork W3029706139 @default.
- W3183249008 hasRelatedWork W3090519073 @default.
- W3183249008 hasRelatedWork W3145703011 @default.
- W3183249008 hasRelatedWork W3159332717 @default.
- W3183249008 hasRelatedWork W3178350790 @default.
- W3183249008 hasRelatedWork W3188161780 @default.
- W3183249008 hasVolume "62" @default.
- W3183249008 isParatext "false" @default.
- W3183249008 isRetracted "false" @default.
- W3183249008 magId "3183249008" @default.
- W3183249008 workType "article" @default.