Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183252807> ?p ?o ?g. }
- W3183252807 endingPage "1167" @default.
- W3183252807 startingPage "1167" @default.
- W3183252807 abstract "The microstructure–property relationship is critical for parts made using the emerging additive manufacturing process where highly localized cooling rates bestow spatially varying microstructures in the material. Typically, large temperature gradients during the build stage are known to result in significant thermally induced residual stresses in parts made using the process. Such stresses are influenced by the underlying local microstructures. Given the extensive range of variations in microstructures, it is useful to have an efficient method that can detect and quantify cause and effect. In this work, an efficient workflow within the machine learning (ML) framework for establishing microstructure–thermal stress correlations is presented. While synthetic microstructures and simulated properties were used for demonstration, the methodology may equally be applied to actual microstructures and associated measured properties. The dataset for ML consisted of images of synthetic microstructures along with thermal stress tensor fields simulated using a finite element (FE) model. The FE model considered various grain morphologies, crystallographic orientations, anisotropic elasticity and anisotropic thermal expansion. The overall workflow was divided into two parts. In the first part, image classification and clustering were performed for a sanity test of data. Accuracies of 97.33% and 99.83% were achieved using the ML based method of classification and clustering, respectively. In the second part of the work, convolution neural network model (CNN) was used to correlate the microstructures against various components and measures of stress. The target vectors of stresses consisted of individual components of stress tensor, principal stresses and hydrostatic stress. The model was able to show a consistent correlation between various morphologies and components of thermal stress. The overall predictions by the model for all the microstructures resulted into R2≈0.96 for all the stresses. Such a correlation may be used for finding a range of microstructures associated with lower amounts of thermally induced stresses. This would allow the choice of suitable process parameters that can ensure that the desired microstructures are obtained, provided the relationship between those parameters and microstructures are also known." @default.
- W3183252807 created "2021-08-02" @default.
- W3183252807 creator A5022692229 @default.
- W3183252807 creator A5042808791 @default.
- W3183252807 creator A5072824985 @default.
- W3183252807 creator A5085892657 @default.
- W3183252807 date "2021-07-22" @default.
- W3183252807 modified "2023-10-06" @default.
- W3183252807 title "Machine Learning Based Methods for Obtaining Correlations between Microstructures and Thermal Stresses" @default.
- W3183252807 cites W1973785582 @default.
- W3183252807 cites W2033793034 @default.
- W3183252807 cites W2034400748 @default.
- W3183252807 cites W2063629125 @default.
- W3183252807 cites W2074616700 @default.
- W3183252807 cites W2089468765 @default.
- W3183252807 cites W2104097935 @default.
- W3183252807 cites W2128728535 @default.
- W3183252807 cites W2146800939 @default.
- W3183252807 cites W2147536800 @default.
- W3183252807 cites W2511907828 @default.
- W3183252807 cites W2595834889 @default.
- W3183252807 cites W2598611043 @default.
- W3183252807 cites W2742835787 @default.
- W3183252807 cites W2763148304 @default.
- W3183252807 cites W2777965033 @default.
- W3183252807 cites W2803170602 @default.
- W3183252807 cites W2803853299 @default.
- W3183252807 cites W2897795150 @default.
- W3183252807 cites W2907366958 @default.
- W3183252807 cites W2912392993 @default.
- W3183252807 cites W2914605496 @default.
- W3183252807 cites W2949488362 @default.
- W3183252807 cites W2958638066 @default.
- W3183252807 cites W2959639112 @default.
- W3183252807 cites W2967459141 @default.
- W3183252807 cites W2980113469 @default.
- W3183252807 cites W2985778816 @default.
- W3183252807 cites W2985958607 @default.
- W3183252807 cites W3016989108 @default.
- W3183252807 cites W3049618663 @default.
- W3183252807 cites W3095647202 @default.
- W3183252807 cites W3097359895 @default.
- W3183252807 cites W3099859964 @default.
- W3183252807 cites W3164690590 @default.
- W3183252807 cites W3180309787 @default.
- W3183252807 cites W4292495108 @default.
- W3183252807 doi "https://doi.org/10.3390/met11081167" @default.
- W3183252807 hasPublicationYear "2021" @default.
- W3183252807 type Work @default.
- W3183252807 sameAs 3183252807 @default.
- W3183252807 citedByCount "8" @default.
- W3183252807 countsByYear W31832528072021 @default.
- W3183252807 countsByYear W31832528072022 @default.
- W3183252807 countsByYear W31832528072023 @default.
- W3183252807 crossrefType "journal-article" @default.
- W3183252807 hasAuthorship W3183252807A5022692229 @default.
- W3183252807 hasAuthorship W3183252807A5042808791 @default.
- W3183252807 hasAuthorship W3183252807A5072824985 @default.
- W3183252807 hasAuthorship W3183252807A5085892657 @default.
- W3183252807 hasBestOaLocation W31832528072 @default.
- W3183252807 hasConcept C120665830 @default.
- W3183252807 hasConcept C121332964 @default.
- W3183252807 hasConcept C134306372 @default.
- W3183252807 hasConcept C138885662 @default.
- W3183252807 hasConcept C154945302 @default.
- W3183252807 hasConcept C159985019 @default.
- W3183252807 hasConcept C171338203 @default.
- W3183252807 hasConcept C192562407 @default.
- W3183252807 hasConcept C21036866 @default.
- W3183252807 hasConcept C33923547 @default.
- W3183252807 hasConcept C37292000 @default.
- W3183252807 hasConcept C41008148 @default.
- W3183252807 hasConcept C41895202 @default.
- W3183252807 hasConcept C73555534 @default.
- W3183252807 hasConcept C85725439 @default.
- W3183252807 hasConcept C87976508 @default.
- W3183252807 hasConceptScore W3183252807C120665830 @default.
- W3183252807 hasConceptScore W3183252807C121332964 @default.
- W3183252807 hasConceptScore W3183252807C134306372 @default.
- W3183252807 hasConceptScore W3183252807C138885662 @default.
- W3183252807 hasConceptScore W3183252807C154945302 @default.
- W3183252807 hasConceptScore W3183252807C159985019 @default.
- W3183252807 hasConceptScore W3183252807C171338203 @default.
- W3183252807 hasConceptScore W3183252807C192562407 @default.
- W3183252807 hasConceptScore W3183252807C21036866 @default.
- W3183252807 hasConceptScore W3183252807C33923547 @default.
- W3183252807 hasConceptScore W3183252807C37292000 @default.
- W3183252807 hasConceptScore W3183252807C41008148 @default.
- W3183252807 hasConceptScore W3183252807C41895202 @default.
- W3183252807 hasConceptScore W3183252807C73555534 @default.
- W3183252807 hasConceptScore W3183252807C85725439 @default.
- W3183252807 hasConceptScore W3183252807C87976508 @default.
- W3183252807 hasFunder F4320332547 @default.
- W3183252807 hasIssue "8" @default.
- W3183252807 hasLocation W31832528071 @default.
- W3183252807 hasLocation W31832528072 @default.
- W3183252807 hasOpenAccess W3183252807 @default.
- W3183252807 hasPrimaryLocation W31832528071 @default.