Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183256598> ?p ?o ?g. }
- W3183256598 endingPage "102189" @default.
- W3183256598 startingPage "102189" @default.
- W3183256598 abstract "Genome-wide association analysis (GWAS) is a commonly used method to detect the potential biomarkers of Alzheimer's disease (AD). Most existing GWAS methods entail a high computational cost, disregard correlations among imaging data and correlations among genetic data, and ignore various associations between longitudinal imaging and genetic data. A novel GWAS method was proposed to identify potential AD biomarkers and address these problems. A network based on a gated recurrent unit was applied without imputing incomplete longitudinal imaging data to integrate the longitudinal data of variable lengths and extract an image representation. In this study, a modified diet network that can considerably reduce the number of parameters in the genetic network was proposed to perform GWAS between image representation and genetic data. Genetic representation can be extracted in this way. A link between genetic representation and AD was established to detect potential AD biomarkers. The proposed method was tested on a set of simulated data and a real AD dataset. Results of the simulated data showed that the proposed method can accurately detect relevant biomarkers. Moreover, the results of real AD dataset showed that the proposed method can detect some new risk-related genes of AD. Based on previous reports, no research has incorporated a deep-learning model into a GWAS framework to investigate the potential information on super-high-dimensional genetic data and longitudinal imaging data and create a link between imaging genetics and AD for detecting potential AD biomarkers. Therefore, the proposed method may provide new insights into the underlying pathological mechanism of AD." @default.
- W3183256598 created "2021-08-02" @default.
- W3183256598 creator A5035352293 @default.
- W3183256598 creator A5052836808 @default.
- W3183256598 creator A5062060449 @default.
- W3183256598 creator A5083537717 @default.
- W3183256598 creator A5084999538 @default.
- W3183256598 creator A5085142676 @default.
- W3183256598 creator A5089955729 @default.
- W3183256598 date "2021-10-01" @default.
- W3183256598 modified "2023-10-11" @default.
- W3183256598 title "Deep-gated recurrent unit and diet network-based genome-wide association analysis for detecting the biomarkers of Alzheimer's disease" @default.
- W3183256598 cites W1489577306 @default.
- W3183256598 cites W1538457453 @default.
- W3183256598 cites W1550721541 @default.
- W3183256598 cites W1968536479 @default.
- W3183256598 cites W1991866002 @default.
- W3183256598 cites W1996840895 @default.
- W3183256598 cites W1999893542 @default.
- W3183256598 cites W2012884942 @default.
- W3183256598 cites W2042154689 @default.
- W3183256598 cites W2058046532 @default.
- W3183256598 cites W2059193403 @default.
- W3183256598 cites W2078470727 @default.
- W3183256598 cites W2078524519 @default.
- W3183256598 cites W2079179297 @default.
- W3183256598 cites W2089947415 @default.
- W3183256598 cites W2094382020 @default.
- W3183256598 cites W2094547160 @default.
- W3183256598 cites W2115779804 @default.
- W3183256598 cites W2117078302 @default.
- W3183256598 cites W2132739446 @default.
- W3183256598 cites W2136573752 @default.
- W3183256598 cites W2139140353 @default.
- W3183256598 cites W2144457054 @default.
- W3183256598 cites W2157331557 @default.
- W3183256598 cites W2157848968 @default.
- W3183256598 cites W2167393047 @default.
- W3183256598 cites W2174832892 @default.
- W3183256598 cites W2433332932 @default.
- W3183256598 cites W2469067560 @default.
- W3183256598 cites W2473518066 @default.
- W3183256598 cites W2617423684 @default.
- W3183256598 cites W2735438349 @default.
- W3183256598 cites W2736837914 @default.
- W3183256598 cites W2738914580 @default.
- W3183256598 cites W2743129437 @default.
- W3183256598 cites W2765366332 @default.
- W3183256598 cites W2768565562 @default.
- W3183256598 cites W2793804994 @default.
- W3183256598 cites W2796546352 @default.
- W3183256598 cites W2799812114 @default.
- W3183256598 cites W2801431258 @default.
- W3183256598 cites W2803144007 @default.
- W3183256598 cites W2808579812 @default.
- W3183256598 cites W2889574304 @default.
- W3183256598 cites W2899335103 @default.
- W3183256598 cites W2900386946 @default.
- W3183256598 cites W2904087114 @default.
- W3183256598 cites W2904830263 @default.
- W3183256598 cites W2909627766 @default.
- W3183256598 cites W2919115771 @default.
- W3183256598 cites W2921060387 @default.
- W3183256598 cites W2937103122 @default.
- W3183256598 cites W2943850976 @default.
- W3183256598 cites W2945047858 @default.
- W3183256598 cites W2945255879 @default.
- W3183256598 cites W2949231527 @default.
- W3183256598 cites W2962570047 @default.
- W3183256598 cites W2973151618 @default.
- W3183256598 cites W2980130023 @default.
- W3183256598 cites W3126248573 @default.
- W3183256598 cites W3127072919 @default.
- W3183256598 cites W3188398957 @default.
- W3183256598 cites W4211050998 @default.
- W3183256598 doi "https://doi.org/10.1016/j.media.2021.102189" @default.
- W3183256598 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34343841" @default.
- W3183256598 hasPublicationYear "2021" @default.
- W3183256598 type Work @default.
- W3183256598 sameAs 3183256598 @default.
- W3183256598 citedByCount "7" @default.
- W3183256598 countsByYear W31832565982022 @default.
- W3183256598 countsByYear W31832565982023 @default.
- W3183256598 crossrefType "journal-article" @default.
- W3183256598 hasAuthorship W3183256598A5035352293 @default.
- W3183256598 hasAuthorship W3183256598A5052836808 @default.
- W3183256598 hasAuthorship W3183256598A5062060449 @default.
- W3183256598 hasAuthorship W3183256598A5083537717 @default.
- W3183256598 hasAuthorship W3183256598A5084999538 @default.
- W3183256598 hasAuthorship W3183256598A5085142676 @default.
- W3183256598 hasAuthorship W3183256598A5089955729 @default.
- W3183256598 hasConcept C104317684 @default.
- W3183256598 hasConcept C106208931 @default.
- W3183256598 hasConcept C108583219 @default.
- W3183256598 hasConcept C119857082 @default.
- W3183256598 hasConcept C124101348 @default.
- W3183256598 hasConcept C135763542 @default.
- W3183256598 hasConcept C153180895 @default.