Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183286935> ?p ?o ?g. }
- W3183286935 endingPage "1773" @default.
- W3183286935 startingPage "1754" @default.
- W3183286935 abstract "Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non–B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex. Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non–B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex. The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that began in early 2020 has been challenging for every academic health center and health system, hospital, and public health system in the United States and countries worldwide.1Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. Zhang L. Fan G. Xu J. Gu X. Cheng Z. Yu T. Xia J. Wei Y. Wu W. Xie X. Yin W. Li H. Liu M. Xiao Y. Gao H. Guo L. Xie J. Wang G. Jiang R. Gao Z. Jin Q. Wang J. Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet. 2020; 395: 497-506Abstract Full Text Full Text PDF PubMed Scopus (30327) Google Scholar, 2Zhu N. Zhang D. Wang W. Li X. Yang B. Song J. Zhao X. Huang B. Shi W. Lu R. Niu P. Zhan F. Ma X. Wang D. Xu W. Wu G. Gao G.F. Tan W. China Novel Coronavirus I. Research T. A novel coronavirus from patients with pneumonia in China, 2019.N Engl J Med. 2020; 382: 727-733Crossref PubMed Scopus (17095) Google Scholar, 3Chan J.F. Yuan S. Kok K.H. To K.K. Chu H. Yang J. Xing F. Liu J. Yip C.C. Poon R.W. Tsoi H.W. Lo S.K. Chan K.H. Poon V.K. Chan W.M. Ip J.D. Cai J.P. Cheng V.C. Chen H. Hui C.K. Yuen K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.Lancet. 2020; 395: 514-523Abstract Full Text Full Text PDF PubMed Scopus (5853) Google Scholar, 4Wu F. Zhao S. Yu B. Chen Y.M. Wang W. Song Z.G. Hu Y. Tao Z.W. Tian J.H. Pei Y.Y. Yuan M.L. Zhang Y.L. Dai F.H. Liu Y. Wang Q.M. Zheng J.J. Xu L. Holmes E.C. Zhang Y.Z. A new coronavirus associated with human respiratory disease in China.Nature. 2020; 579: 265-269Crossref PubMed Scopus (6883) Google Scholar, 5Coronaviridae Study Group of the International Committee on Taxonomy of VirusesThe species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.Nat Microbiol. 2020; 5: 536-544Crossref PubMed Scopus (4576) Google Scholar, 6Wang C. Horby P.W. Hayden F.G. Gao G.F. A novel coronavirus outbreak of global health concern.Lancet. 2020; 395: 470-473Abstract Full Text Full Text PDF PubMed Scopus (4607) Google Scholar, 7Allel K. Tapia-Munoz T. Morris W. Country-level factors associated with the early spread of COVID-19 cases at 5, 10 and 15 days since the onset.Glob Public Health. 2020; 15: 1589-1602Crossref PubMed Scopus (23) Google Scholar The pandemic has also provided unprecedented opportunities for basic and translational research in all biomedical fields. Molecular population genomics of SARS-CoV-2 were systematically analyzed in the ethnically and socioeconomically diverse metropolitan Houston, TX, area (population 7 million) since the first coronavirus disease 2019 (COVID-19) cases were reported in early March 2020.8Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.R. Shukla M. Nguyen M. Ojeda Saavedra M. Cantu C.C. Yerramilli P. Pruitt L. Subedi S. Hendrickson H. Eskandari G. Kumaraswami M. McLellan J.S. Musser J.M. Molecular architecture of early dissemination and evolution of the SARS-CoV-2 virus in metropolitan Houston, Texas.bioRxiv. 2020; 11 (e02707-20)Google Scholar, 9Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.J. Shukla M. Nguyen M. Saavedra M.O. Yerramilli P. Pruitt L. Subedi S. Kuo H.C. Hendrickson H. Eskandari G. Nguyen H.A.T. Long J.H. Kumaraswami M. Goike J. Boutz D. Gollihar J. McLellan J.S. Chou C.W. Javanmardi K. Finkelstein I.J. Musser J.M. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area.MBio. 2020; 11: e02707-e02720Crossref PubMed Scopus (69) Google Scholar, 10Long S.W. Olsen R.J. Christensen P.A. Subedi S. Olson R. Davis J.J. Saavedra M.O. Yerramilli P. Pruitt L. Reppond K. Shyer M.N. Cambric J. Finkelstein I.J. Gollihar J. Musser J.M. Sequence analysis of 20,453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston metropolitan area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern.Am J Pathol. 2021; 191: 983-992Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar, 11Musser J.M. Olsen R.J. Christensen P.A. Long S.W. Subedi S. Davis J.J. Gollihar J. Rapid, widespread, and preferential increase of SARS-CoV-2 B.1.1.7 variant in Houston, TX, revealed by 8,857 genome sequences.medRxiv. 2021; ([Preprint] doi:10.1101/2021.03.16.21253753)Google Scholar These studies are facilitated by a central molecular diagnostic laboratory that comprehensively identifies and retains all COVID-19 diagnostic specimens from our large health care system, which includes eight hospitals, emergency care clinics, and outpatient centers distributed throughout the metropolitan region. In addition, the longstanding interest in pathogen genomics and sequencing infrastructure was leveraged to investigate the spread of SARS-CoV-2 in metropolitan Houston.8Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.R. Shukla M. Nguyen M. Ojeda Saavedra M. Cantu C.C. Yerramilli P. Pruitt L. Subedi S. Hendrickson H. Eskandari G. Kumaraswami M. McLellan J.S. Musser J.M. Molecular architecture of early dissemination and evolution of the SARS-CoV-2 virus in metropolitan Houston, Texas.bioRxiv. 2020; 11 (e02707-20)Google Scholar, 9Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.J. Shukla M. Nguyen M. Saavedra M.O. Yerramilli P. Pruitt L. Subedi S. Kuo H.C. Hendrickson H. Eskandari G. Nguyen H.A.T. Long J.H. Kumaraswami M. Goike J. Boutz D. Gollihar J. McLellan J.S. Chou C.W. Javanmardi K. Finkelstein I.J. Musser J.M. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area.MBio. 2020; 11: e02707-e02720Crossref PubMed Scopus (69) Google Scholar, 10Long S.W. Olsen R.J. Christensen P.A. Subedi S. Olson R. Davis J.J. Saavedra M.O. Yerramilli P. Pruitt L. Reppond K. Shyer M.N. Cambric J. Finkelstein I.J. Gollihar J. Musser J.M. Sequence analysis of 20,453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston metropolitan area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern.Am J Pathol. 2021; 191: 983-992Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar, 11Musser J.M. Olsen R.J. Christensen P.A. Long S.W. Subedi S. Davis J.J. Gollihar J. Rapid, widespread, and preferential increase of SARS-CoV-2 B.1.1.7 variant in Houston, TX, revealed by 8,857 genome sequences.medRxiv. 2021; ([Preprint] doi:10.1101/2021.03.16.21253753)Google Scholar, 12Long S.W. Olsen R.J. Eagar T.N. Beres S.B. Zhao P. Davis J.J. Brettin T. Xia F. Musser J.M. Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307.MBio. 2017; 8: e00489-17Crossref PubMed Scopus (76) Google Scholar, 13Long S.W. Beres S.B. Olsen R.J. Musser J.M. Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing.MBio. 2014; 5: e01692-14Crossref PubMed Scopus (60) Google Scholar, 14Wright A.M. Beres S.B. Consamus E.N. Long S.W. Flores A.R. Barrios R. Richter G.S. Oh S.Y. Garufi G. Maier H. Drews A.L. Stockbauer K.E. Cernoch P. Schneewind O. Olsen R.J. Musser J.M. Rapidly progressive, fatal, inhalation anthrax-like infection in a human: case report, pathogen genome sequencing, pathology, and coordinated response.Arch Pathol Lab Med. 2011; 135: 1447-1459Crossref PubMed Scopus (54) Google Scholar, 15Nasser W. Beres S.B. Olsen R.J. Dean M.A. Rice K.A. Long S.W. Kristinsson K.G. Gottfredsson M. Vuopio J. Raisanen K. Caugant D.A. Steinbakk M. Low D.E. McGeer A. Darenberg J. Henriques-Normark B. Van Beneden C.A. Hoffmann S. Musser J.M. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.Proc Natl Acad Sci U S A. 2014; 111: E1768-E1776Crossref PubMed Scopus (191) Google Scholar, 16Kachroo P. Eraso J.M. Beres S.B. Olsen R.J. Zhu L. Nasser W. Bernard P.E. Cantu C.C. Saavedra M.O. Arredondo M.J. Strope B. Do H. Kumaraswami M. Vuopio J. Grondahl-Yli-Hannuksela K. Kristinsson K.G. Gottfredsson M. Pesonen M. Pensar J. Davenport E.R. Clark A.G. Corander J. Caugant D.A. Gaini S. Magnussen M.D. Kubiak S.L. Nguyen H.A.T. Long S.W. Porter A.R. DeLeo F.R. Musser J.M. Integrated analysis of population genomics, transcriptomics and virulence provides novel insights into Streptococcus pyogenes pathogenesis.Nat Genet. 2019; 51: 548-559Crossref PubMed Scopus (43) Google Scholar SARS-CoV-2 viruses causing infections in the earliest phase of the pandemic affecting Houston had substantial genomic diversity and are progeny of strains derived from several continents, including Europe and Asia.8Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.R. Shukla M. Nguyen M. Ojeda Saavedra M. Cantu C.C. Yerramilli P. Pruitt L. Subedi S. Hendrickson H. Eskandari G. Kumaraswami M. McLellan J.S. Musser J.M. Molecular architecture of early dissemination and evolution of the SARS-CoV-2 virus in metropolitan Houston, Texas.bioRxiv. 2020; 11 (e02707-20)Google Scholar,9Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.J. Shukla M. Nguyen M. Saavedra M.O. Yerramilli P. Pruitt L. Subedi S. Kuo H.C. Hendrickson H. Eskandari G. Nguyen H.A.T. Long J.H. Kumaraswami M. Goike J. Boutz D. Gollihar J. McLellan J.S. Chou C.W. Javanmardi K. Finkelstein I.J. Musser J.M. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area.MBio. 2020; 11: e02707-e02720Crossref PubMed Scopus (69) Google Scholar These findings indicated that SARS-CoV-2 was introduced into our region many times independently by individuals who had traveled from different parts of the country and the world. Subsequently, sequence analysis of 5085 genomes causing the first disease wave and massive second disease wave in Houston showed that all strains in the second wave had a D614G amino acid replacement in the spike protein.9Long S.W. Olsen R.J. Christensen P.A. Bernard D.W. Davis J.J. Shukla M. Nguyen M. Saavedra M.O. Yerramilli P. Pruitt L. Subedi S. Kuo H.C. Hendrickson H. Eskandari G. Nguyen H.A.T. Long J.H. Kumaraswami M. Goike J. Boutz D. Gollihar J. McLellan J.S. Chou C.W. Javanmardi K. Finkelstein I.J. Musser J.M. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area.MBio. 2020; 11: e02707-e02720Crossref PubMed Scopus (69) Google Scholar The D614G polymorphism increases human transmission and infectivity in vitro and in vivo in animal infection models.17Korber B. Fischer W.M. Gnanakaran S. Yoon H. Theiler J. Abfalterer W. Hengartner N. Giorgi E.E. Bhattacharya T. Foley B. Hastie K.M. Parker M.D. Partridge D.G. Evans C.M. Freeman T.M. de Silva T.I. Sheffield C.-G.G. McDanal C. Perez L.G. Tang H. Moon-Walker A. Whelan S.P. LaBranche C.C. Saphire E.O. Montefiori D.C. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus.Cell. 2020; 182: 812-827.e19Abstract Full Text Full Text PDF PubMed Scopus (2459) Google Scholar, 18Plante J.A. Liu Y. Liu J. Xia H. Johnson B.A. Lokugamage K.G. Zhang X. Muruato A.E. Zou J. Fontes-Garfias C.R. Mirchandani D. Scharton D. Bilello J.P. Ku Z. An Z. Kalveram B. Freiberg A.N. Menachery V.D. Xie X. Plante K.S. Weaver S.C. Shi P.Y. Spike mutation D614G alters SARS-CoV-2 fitness.Nature. 2021; 592: 116-121Crossref PubMed Scopus (890) Google Scholar, 19Daniloski Z. Jordan T.X. Ilmain J.K. Guo X. Bhabha G. tenOever B.R. Sanjana N.E. The spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types.Elife. 2021; 10: e65365Crossref PubMed Scopus (107) Google Scholar, 20Zhang L. Jackson C.B. Mou H. Ojha A. Peng H. Quinlan B.D. Rangarajan E.S. Pan A. Vanderheiden A. Suthar M.S. Li W. Izard T. Rader C. Farzan M. Choe H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity.Nat Commun. 2020; 11: 6013Crossref PubMed Scopus (531) Google Scholar, 21Volz E. Hill V. McCrone J.T. Price A. Jorgensen D. O'Toole A. Southgate J. Johnson R. Jackson B. Nascimento F.F. Rey S.M. Nicholls S.M. Colquhoun R.M. da Silva Filipe A. Shepherd J. Pascall D.J. Shah R. Jesudason N. Li K. Jarrett R. Pacchiarini N. Bull M. Geidelberg L. Siveroni I. Consortium C.-U. Goodfellow I. Loman N.J. Pybus O.G. Robertson D.L. Thomson E.C. Rambaut A. Connor T.R. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity.Cell. 2021; 184: 64-75.e11Abstract Full Text Full Text PDF PubMed Scopus (592) Google Scholar, 22Benton D.J. Wrobel A.G. Roustan C. Borg A. Xu P. Martin S.R. Rosenthal P.B. Skehel J.J. Gamblin S.J. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2.Proc Natl Acad Sci U S A. 2021; 118 (:e2022586118)Crossref PubMed Scopus (78) Google Scholar More importantly, this was the first study to analyze the molecular architecture of SARS-CoV-2 in two infection waves in any major metropolitan region. One of the key goals since the start of the pandemic has been to sequence all positive SARS-CoV-2 specimens from patients in our hospital system and rapidly identify mutations that may be associated with detrimental patient outcome, including therapeutic or vaccine failure. Similarly, with the recognition of an increasing number of SARS-CoV-2 variants of interest (VOIs) and variants of concern (VOCs) by public health agencies, such as the US CDC, World Health Organization, and Public Health England (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html, last accessed June 8, 2021; and https://www.gov.uk/government/collections/new-sars-cov-2-variant, last accessed June 8, 2021), there is now substantial domestic and international need to identify these virus genotypes rapidly and understand their velocity and patterns of dissemination. In particular, VOC B.1.1.7 (also termed Alpha), first identified in the United Kingdom, is of special interest because it has the ability to transmit effectively, it can spread through populations rapidly, and has been reported to have a significantly higher mortality rate than non-B.1.1.7 infections (Virological, https://virological.org/t/preliminary-genomic-characterisation- of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563, last accessed June 8, 2021; Public Health England, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/947048/technical_briefing_voc_sh_njl2_sh2.pdf, last accessed June 8, 2021; New and Emerging Respiratory Virus Threats Advisory Group, https://app.box.com/s/3lkcbxepqixkg4mv640dpvvg978ixjtf/file/756963730457, last accessed June 8, 2021; Centre for Mathematical Modelling of Infectious Diseases, https://cmmid.github.io/topics/covid19/uk-novel-variant.html, last accessed June 8, 2021; and https://virological.org/t/lineage-specific-growth-of-sars-cov-2-b-1-1-7-during-the-english-national-lockdown/575, last accessed June 8, 2021).23Grubaugh N.D. Hodcroft E.B. Fauver J.R. Phelan A.L. Cevik M. Public health actions to control new SARS-CoV-2 variants.Cell. 2021; 184: 1127-1132Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar, 24Walensky R.P. Walke H.T. Fauci A.S. SARS-CoV-2 variants of concern in the United States-challenges and opportunities.JAMA. 2021; 325: 1037-1038Crossref PubMed Scopus (203) Google Scholar, 25Mascola J.R. Graham B.S. Fauci A.S. SARS-CoV-2 viral variants-tackling a moving target.JAMA. 2021; 325: 1261-1262Crossref PubMed Scopus (121) Google Scholar, 26Davies N.G. Abbott S. Barnard R.C. Jarvis C.I. Kucharski A.J. Munday J.D. Pearson C.A.B. Russell T.W. Tully D.C. Washburne A.D. Wenseleers T. Gimma A. Waites W. Wong K.L.M. van Zandvoort K. Silverman J.D. Group C.C.-W. Consortium C.-G.U. Diaz-Ordaz K. Keogh R. Eggo R.M. Funk S. Jit M. Atkins K.E. Edmunds W.J. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.Science. 2021; 372: eabg3055Crossref PubMed Scopus (22) Google Scholar, 27Volz E. Mishra S. Chand M. Barrett J.C. Johnson R. Geidelberg L. Hinsley W.R. Laydon D.J. Dabrera G. O'Toole Á. Amato R. Ragonnet-Cronin M. Harrison I. Jackson B. Ariani C.V. Boyd O. Loman N.J. McCrone J.T. Gonçalves S. Jorgensen D. Myers R. Hill V. Jackson D.K. Gaythorpe K. Groves N. Sillitoe J. Kwiatkowski D.P. Flaxman S. Ratmann O. Bhatt S. Hopkins S. Gandy A. Rambaut A. Ferguson N.M. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data.medRxiv. 2021; ([Preprint] doi:10.1101/2020.12.30.20249034)PubMed Google Scholar, 28Graham M.S. Sudre C.H. May A. Antonelli M. Murray B. Varsavsky T. Kläser K. Canas L.S. Molteni E. Modat M. Drew D.A. Nguyen L.H. Polidori L. Selvachandran S. Hu C. Capdevila J. Hammers A. Chan A.T. Wolf J. Spector T.D. Steves C.J. Ourselin S. Changes in symptomatology, re-infection and transmissibility associated with SARS-CoV-2 variant B.1.1.7: an ecological study.Lancet Public Health. 2021; 6: e335-e345Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar, 29Challen R. Brooks-Pollock E. Read J.M. Dyson L. Tsaneva-Atanasova K. Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study.BMJ. 2021; 372: n579Crossref PubMed Scopus (473) Google Scholar, 30Lumley S.F. Rodger G. Constantinides B. Sanderson N. Chau K.K. Street T.L. et al.An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status.Clin Infect Dis. 2021; : ciab608Crossref PubMed Scopus (22) Google Scholar, 31Washington N.L. Gangavarapu K. Zeller M. Bolze A. Cirulli E.T. Schiabor Barrett K.M. et al.Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.Cell. 2021; 184: 2587-2594.e7Abstract Full Text Full Text PDF PubMed Scopus (148) Google Scholar, 32Kissler S.M. Fauver J.R. Mack C. Tai C.G. Breban M.I. Watkins A.E. Samant R.M. Anderson D.J. Ho D.D. Grubaugh N.D. Grad Y.H. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2.medRxiv [Preprint]. 2021; (doi:10.1101/2021.02.16.21251535)Google Scholar, 33Galloway S.E. Paul P. MacCannell D.R. Johansson M.A. Brooks J.T. MacNeil A. Slayton R.B. Tong S. Silk B.J. Armstrong G.L. Biggerstaff M. Dugan V.G. Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, December 29, 2020-January 12, 2021.MMWR Morb Mortal Wkly Rep. 2021; 70: 95-99Crossref PubMed Google Scholar, 34Alpert T. Lasek-Nesselquist E. Brito A.F. Valesano A.L. Rothman J. MacKay M.J. et al.Early introductions and community transmission of SARS-CoV-2 variant B.1.1.7 in the United States.medRxiv. 2021; ([Preprint] doi:10.1101/2021.02.10.21251540)Google Scholar, 35Patone M. Thomas K. Hatch R. Tan P.S. Coupland C. Liao W. Mouncey P. Harrison D. Rowan K. Horby P. Watkinson P. Hippisley-Cox J. Analysis of severe outcomes associated with the SARS-CoV-2 variant of concern 202012/01 in England using ICNARC Case Mix Programme and QResearch databases.medRxiv. 2021; ([Preprint] doi:10.1101/2021.03.11.21253364)Google Scholar, 36Piantham C. Linton N.M. Nishiura H. Ito K. Estimating the increased transmissibility of the B.1.1.7 strain over previously circulating strains in England using frequencies of GISAID sequences and the distribution of serial intervals.medRxiv. 2021; ([Preprint] doi:10.1101/2021.03.17.21253775)Google Scholar VOCs B.1.351 (β) and P.1 (Gamma), found to cause widespread disease in South Africa and Brazil, respectively, have sequence changes in spike protein that make them less susceptible to host and some therapeutic antibodies.37Naveca F. Nascimento V. Souza V. Corado A. Nascimento F. Silva G. Costa Á. Duarte D. Pessoa K. Gonçalves L. Brandão M.J. Jesus M. Fernandes C. Pinto R. Silva M. Mattos T. Wallau G.L. Siqueira M.M. Resende P.C. Delatorre E. Gräf T. Bello G. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the spike protein.virological.org. 2021; Google Scholar, 38Voloch C.M. Silva F.R.d. de Almeida L.G.P. Cardoso C.C. Brustolini O.J. Gerber A.L. Guimarães A.P.d.C. Mariani D. Costa R.M.d. Ferreira O.C. Cavalcanti A.C. Frauches T.S. de Mello C.M.B. Galliez R.M. Faffe D.S. Castiñeiras T.M.P.P. Tanuri A. de Vasconcelos A.T.R. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil.J Virol. 2021; 95: e00119-21Crossref Scopus (196) Google Scholar, 39Tegally H. Wilkinson E. Giovanetti M. Iranzadeh A. Fonseca V. Giandhari J. et al.Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa.medRxiv. 2020; ([Preprint] doi:10.1101/2020.12.21.20248640)Google Scholar, 40Bobeil S.M. Janowska K. McDowell S. Mansouri K. Parks R. Stalls V. Kopp M. Manne K. Li D. Wiehe K. Saunders K. Edwards R. Korber B. Haynes B. Henderson R. Acharya P. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity.Science. 2021; 373: eabi6226Crossref PubMed Scopus (182) Google Scholar Recently, two additional VOIs, B.1.427 and B.1.429 (Epsilon), were recognized by the CDC in part because of their rapid transmission in many California communities41Zhang W. Davis B.D. Chen S.S. Sincuir Martinez J.M. Plummer J.T. Vail E. Emergence of a novel SARS-CoV-2 variant in southern California.JAMA. 2021; 325: 1324-1326Crossref PubMed Scopus (207) Google Scholar (Outbreak.info, https://outbreak.info/situation-reports?pango=b.1.427, last accessed June 8, 2021; and https://outbreak.info/situation-reports?pango=b.1.4279, last accessed June 8, 2021). Based on sequencing 20,453 SARS-CoV-2 genomes causing COVID-19 disease in Houston, all named VOIs and VOCs are circulating in the metropolitan region, making it the first community to document their presence.10Long S.W. Olsen R.J. Christensen P.A. Subedi S. Olson R. Davis J.J. Saavedra M.O. Yerramilli P. Pruitt L. Reppond K. Shyer M.N. Cambric J. Finkelstein I.J. Gollihar J. Musser J.M. Sequence analysis of 20,453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston metropolitan area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern.Am J Pathol. 2021; 191: 983-992Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar A follow-up study reported rapid increase of VOC UK B.1.1.7 in Houston11Musser J.M. Olsen R.J. Christensen P.A. Long S.W. Subedi S. Davis J.J. Gollihar J. Rapid, widespread, and preferential increase of SARS-CoV-2 B.1.1.7 variant in Houston, TX, revealed by 8,857 genome sequences.medRxiv. 2021; ([Preprint] doi:10.1101/2021.03.16.21253753)Google Scholar; cases infected with the variant were estimated to have a doubling time of approximately 7 days. This rapid B.1.1.7 growth trajectory raised the possibility that this variant would cause nearly all new COVID-19 cases in metropolitan Houston by the end of March or early April 2021, a time frame similar to an estimate made in late January by the CDC.33Galloway S.E. Paul P. MacCannell D.R. Johansson M.A. Brooks J.T. MacNeil A. Slayton R.B. Tong S. Silk B.J. Armstrong G.L. Biggerstaff M. Dugan V.G. Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, December 29, 2020-January 12, 2021.MMWR Morb Mortal Wkly Rep. 2021; 70: 95-99Crossref PubMed Google Scholar This study reports integrated virus genome and patient data for 12,476 unique COVID-19 cases identified between January 1, 2021, and May 31, 2021, including 3276 patients with the B.1.1.7 VOC. In the latter half of May, depending on the day, 63% to 90% of all new COVID-19 cases in metropolitan Houston were caused by B.1.1.7. Linked medical record information, available for virtually all sequenced genomes, was used to study the relationship between virus genotypes and patient phenotypes. Patients infected with B.1.1.7 had significantly lower cycle threshold (CT) values in nasopharyngeal specimens (considered to be a proxy for higher virus load) and a significantly higher hospitalization rate compared with non-B.1.1.7 patients. There was no difference between these two groups in hospital length of stay or mortality. Of the 3276 B.1.1.7 genomes, 11 (0.3%) had an E484K change in spike protein that reduces binding by some neutralizing antibodies. Unexpectedly, five cases of B.1.1.7 were detected from samples collected in early December, resulting in a revised time frame for the introduction of this variant to Houston. Twenty-two patients were identified with COVID-19 caused by B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants reported to be causing widespread disease and extensive public health problems in India, other Southeast Asian countries, and many regions of the United Kingdom (World Health Organization, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021, last accessed June 9, 2021).42Cherian S. Potdar V. Jadhav S. Yadav P. Gupta N. Das M. Rakshit P. Singh S. Abraham P. Panda S. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India.bioRxiv. 2021; ([Preprint] doi:10.1101/2021.04.22.440932)Google Scholar, 43Yadav P.D. Sapkal G.N. Abraham P. Ella R. Deshpande G. Patil D.Y. Nyayanit D.A. Gupta N. Sahay R.R. Shete A.M. Panda S. Bhargava B. Mohan V.K. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees.Clin Infect Dis. 2021; : ciab411Crossref PubMed Scopus (101) Google Scholar, 44Yadav P.D. Mohandas S. Shete A.M. Nyayanit D.A. Gupta N. Patil D.Y. Sapkal G.N. Potdar V. Kadam M. Kumar A. Kumar S. Suryavanshi D. Mote C.S. Abraham P. Panda S. Bhargava B. SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant.bioRxiv. 2021; ([Preprint] doi:10.1101/2021.05.05.442760)PubMed Google Scholar, 45Hoffmann M. Hofmann-Winkler H. Krüger N. Kempf A. Nehlmeier I. Graichen L. Sidarovich A. Moldenhauer A.-S. Winkler M.S. Schulz S. Jäck H.-M. Stankov M.V. Behrens G.M.N. Pöhlmann S. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination.Cell Rep. 2021; 36: 109415Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar, 46Ferreira I. Datir R. Kemp S. Papa G. Rakshit P. Singh S. et al.The Indian SARS-CoV-2 Genomics Consortium (INSACOG); The CITIID-NIHR BioResource COVID-19 Collaboration; The Genotype to Phenotyp" @default.
- W3183286935 created "2021-08-02" @default.
- W3183286935 creator A5004659828 @default.
- W3183286935 creator A5010204053 @default.
- W3183286935 creator A5011999177 @default.
- W3183286935 creator A5015210172 @default.
- W3183286935 creator A5023182546 @default.
- W3183286935 creator A5023451003 @default.
- W3183286935 creator A5027390602 @default.
- W3183286935 creator A5027518470 @default.
- W3183286935 creator A5030820300 @default.
- W3183286935 creator A5038987250 @default.
- W3183286935 creator A5044852752 @default.
- W3183286935 creator A5044861911 @default.
- W3183286935 creator A5054473742 @default.
- W3183286935 creator A5058623296 @default.
- W3183286935 creator A5058852054 @default.
- W3183286935 creator A5065254196 @default.
- W3183286935 creator A5066399877 @default.
- W3183286935 creator A5069754740 @default.
- W3183286935 creator A5080401389 @default.
- W3183286935 creator A5085398842 @default.
- W3183286935 date "2021-10-01" @default.
- W3183286935 modified "2023-10-09" @default.
- W3183286935 title "Trajectory of Growth of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants in Houston, Texas, January through May 2021, Based on 12,476 Genome Sequences" @default.
- W3183286935 cites W1989769331 @default.
- W3183286935 cites W2041284893 @default.
- W3183286935 cites W2126308420 @default.
- W3183286935 cites W2132139538 @default.
- W3183286935 cites W2614194794 @default.
- W3183286935 cites W2913403432 @default.
- W3183286935 cites W3001118548 @default.
- W3183286935 cites W3001465255 @default.
- W3183286935 cites W3001897055 @default.
- W3183286935 cites W3002539152 @default.
- W3183286935 cites W3003217347 @default.
- W3183286935 cites W3009906937 @default.
- W3183286935 cites W3039901154 @default.
- W3183286935 cites W3083182046 @default.
- W3183286935 cites W3093768302 @default.
- W3183286935 cites W3097640683 @default.
- W3183286935 cites W3098697637 @default.
- W3183286935 cites W3107112434 @default.
- W3183286935 cites W3111255098 @default.
- W3183286935 cites W3121365103 @default.
- W3183286935 cites W3121995178 @default.
- W3183286935 cites W3123108673 @default.
- W3183286935 cites W3127156551 @default.
- W3183286935 cites W3127346294 @default.
- W3183286935 cites W3127683214 @default.
- W3183286935 cites W3127798546 @default.
- W3183286935 cites W3127852352 @default.
- W3183286935 cites W3128016658 @default.
- W3183286935 cites W3128104279 @default.
- W3183286935 cites W3129126893 @default.
- W3183286935 cites W3129558828 @default.
- W3183286935 cites W3131995220 @default.
- W3183286935 cites W3132370527 @default.
- W3183286935 cites W3134161822 @default.
- W3183286935 cites W3134208712 @default.
- W3183286935 cites W3134446480 @default.
- W3183286935 cites W3134566701 @default.
- W3183286935 cites W3135273148 @default.
- W3183286935 cites W3135409471 @default.
- W3183286935 cites W3136247297 @default.
- W3183286935 cites W3139533912 @default.
- W3183286935 cites W3140446408 @default.
- W3183286935 cites W3150631493 @default.
- W3183286935 cites W3152490217 @default.
- W3183286935 cites W3153508314 @default.
- W3183286935 cites W3153636933 @default.
- W3183286935 cites W3155452054 @default.
- W3183286935 cites W3155554970 @default.
- W3183286935 cites W3155952134 @default.
- W3183286935 cites W3156185417 @default.
- W3183286935 cites W3165383284 @default.
- W3183286935 cites W3165605711 @default.
- W3183286935 cites W3166719420 @default.
- W3183286935 cites W3170677418 @default.
- W3183286935 cites W3173241791 @default.
- W3183286935 cites W3174731125 @default.
- W3183286935 cites W4205483821 @default.
- W3183286935 doi "https://doi.org/10.1016/j.ajpath.2021.07.002" @default.
- W3183286935 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8299152" @default.
- W3183286935 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34303698" @default.
- W3183286935 hasPublicationYear "2021" @default.
- W3183286935 type Work @default.
- W3183286935 sameAs 3183286935 @default.
- W3183286935 citedByCount "23" @default.
- W3183286935 countsByYear W31832869352020 @default.
- W3183286935 countsByYear W31832869352021 @default.
- W3183286935 countsByYear W31832869352022 @default.
- W3183286935 crossrefType "journal-article" @default.
- W3183286935 hasAuthorship W3183286935A5004659828 @default.
- W3183286935 hasAuthorship W3183286935A5010204053 @default.
- W3183286935 hasAuthorship W3183286935A5011999177 @default.
- W3183286935 hasAuthorship W3183286935A5015210172 @default.
- W3183286935 hasAuthorship W3183286935A5023182546 @default.