Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183353669> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3183353669 endingPage "11588" @default.
- W3183353669 startingPage "11573" @default.
- W3183353669 abstract "One of the most basic characteristic features of every smart device in a network based on the Internet of Things (IoT) is to gather a larger set of data that has been created and then transfer the gathered data to the destination/receiver server through the internet. Thus, IoT-based networks are most vulnerable to simple or complex attacks that need to be identified in the early stage of data transmission for saving the network from these malicious attacks. The chief goal of the proposed work is to design and form the intelligent intrusion detection system (I-IDS) using the machine learning models such that the attacks can be identified in the IoT network. The model is built considering the normal and malicious attacks on the data that are generated in IoT smart environment. To simulate such a model, a testbed is built where a wireless router, a DHT11 sensor, and a node MCU are being used during the design phase. An attacker or adversarial system is built to perform poisoning and sniffing attacks using a laptop system. The node captures the sensor values and transmits the data to the ThinkSpeak platform, during the normal phase via the wireless gateway, and in the attack phase, the malicious attacker interprets the data, modifies it while transmitting from node to the ThinkSpeak server. Thus, the attack called Man-In-The-Middle (MITM) is performed and classified as abnormal data. Various machine learning algorithms are performed on the data, and finally, the results obtained using a probabilistic model called as Markov model have a high performance evaluated based on the I-IDS IoT network. The results obtained during the experimental analysis show that the Markov model has obtained a 100% detection rate and 19% of false alarm rate (FAR) with high precision and low error rate. The algorithms such as naïve Bayes classifier, support vector machine (SVM), decision tree, and Adaboost are considered in comparison with the Markov model. The optimal solution is obtained concerning other evaluation metrics like sensitivity, F1, and true-positive rate (TPR). Therefore, the integrated network of IoT-WSN with its performance metrics is tabulated to show the potentials of securing a network system. Additionally, the proposed work gives a high level of security for IoT smart environment as compared with the other machine learning algorithms using the novel technique of intelligent IDS." @default.
- W3183353669 created "2021-08-02" @default.
- W3183353669 creator A5004711948 @default.
- W3183353669 creator A5023158517 @default.
- W3183353669 date "2021-07-19" @default.
- W3183353669 modified "2023-10-10" @default.
- W3183353669 title "IoT-based smart environment using intelligent intrusion detection system" @default.
- W3183353669 cites W2219140802 @default.
- W3183353669 cites W2517578794 @default.
- W3183353669 cites W2557450880 @default.
- W3183353669 cites W2592056285 @default.
- W3183353669 cites W2774107733 @default.
- W3183353669 cites W2781275077 @default.
- W3183353669 cites W2810641345 @default.
- W3183353669 cites W2889108654 @default.
- W3183353669 cites W2902106343 @default.
- W3183353669 cites W2904959125 @default.
- W3183353669 cites W2907421153 @default.
- W3183353669 cites W2911505293 @default.
- W3183353669 cites W2914347267 @default.
- W3183353669 cites W2929049293 @default.
- W3183353669 cites W2945230547 @default.
- W3183353669 cites W2945722842 @default.
- W3183353669 cites W2946005034 @default.
- W3183353669 cites W2952103830 @default.
- W3183353669 cites W2960507082 @default.
- W3183353669 cites W2968931736 @default.
- W3183353669 cites W2969468102 @default.
- W3183353669 cites W2987654321 @default.
- W3183353669 cites W3003924369 @default.
- W3183353669 cites W3007760086 @default.
- W3183353669 cites W3093136448 @default.
- W3183353669 doi "https://doi.org/10.1007/s00500-021-06028-1" @default.
- W3183353669 hasPublicationYear "2021" @default.
- W3183353669 type Work @default.
- W3183353669 sameAs 3183353669 @default.
- W3183353669 citedByCount "12" @default.
- W3183353669 countsByYear W31833536692022 @default.
- W3183353669 countsByYear W31833536692023 @default.
- W3183353669 crossrefType "journal-article" @default.
- W3183353669 hasAuthorship W3183353669A5004711948 @default.
- W3183353669 hasAuthorship W3183353669A5023158517 @default.
- W3183353669 hasBestOaLocation W31833536692 @default.
- W3183353669 hasConcept C110875604 @default.
- W3183353669 hasConcept C111919701 @default.
- W3183353669 hasConcept C127413603 @default.
- W3183353669 hasConcept C187713609 @default.
- W3183353669 hasConcept C24590314 @default.
- W3183353669 hasConcept C2775896111 @default.
- W3183353669 hasConcept C31258907 @default.
- W3183353669 hasConcept C31395832 @default.
- W3183353669 hasConcept C35525427 @default.
- W3183353669 hasConcept C38652104 @default.
- W3183353669 hasConcept C38822068 @default.
- W3183353669 hasConcept C41008148 @default.
- W3183353669 hasConcept C557945733 @default.
- W3183353669 hasConcept C62611344 @default.
- W3183353669 hasConcept C66938386 @default.
- W3183353669 hasConceptScore W3183353669C110875604 @default.
- W3183353669 hasConceptScore W3183353669C111919701 @default.
- W3183353669 hasConceptScore W3183353669C127413603 @default.
- W3183353669 hasConceptScore W3183353669C187713609 @default.
- W3183353669 hasConceptScore W3183353669C24590314 @default.
- W3183353669 hasConceptScore W3183353669C2775896111 @default.
- W3183353669 hasConceptScore W3183353669C31258907 @default.
- W3183353669 hasConceptScore W3183353669C31395832 @default.
- W3183353669 hasConceptScore W3183353669C35525427 @default.
- W3183353669 hasConceptScore W3183353669C38652104 @default.
- W3183353669 hasConceptScore W3183353669C38822068 @default.
- W3183353669 hasConceptScore W3183353669C41008148 @default.
- W3183353669 hasConceptScore W3183353669C557945733 @default.
- W3183353669 hasConceptScore W3183353669C62611344 @default.
- W3183353669 hasConceptScore W3183353669C66938386 @default.
- W3183353669 hasIssue "17" @default.
- W3183353669 hasLocation W31833536691 @default.
- W3183353669 hasLocation W31833536692 @default.
- W3183353669 hasOpenAccess W3183353669 @default.
- W3183353669 hasPrimaryLocation W31833536691 @default.
- W3183353669 hasRelatedWork W1499713657 @default.
- W3183353669 hasRelatedWork W1600287291 @default.
- W3183353669 hasRelatedWork W1994776128 @default.
- W3183353669 hasRelatedWork W2113723663 @default.
- W3183353669 hasRelatedWork W2137696317 @default.
- W3183353669 hasRelatedWork W2163203631 @default.
- W3183353669 hasRelatedWork W2165645310 @default.
- W3183353669 hasRelatedWork W2768101539 @default.
- W3183353669 hasRelatedWork W3043172660 @default.
- W3183353669 hasRelatedWork W3215217606 @default.
- W3183353669 hasVolume "25" @default.
- W3183353669 isParatext "false" @default.
- W3183353669 isRetracted "false" @default.
- W3183353669 magId "3183353669" @default.
- W3183353669 workType "article" @default.