Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183442019> ?p ?o ?g. }
- W3183442019 endingPage "10867" @default.
- W3183442019 startingPage "10834" @default.
- W3183442019 abstract "Trait-based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field-based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual-tree crowns within a temperate forest site and then assigning RS-derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between- and within-species variation across contiguous space. We used airborne imaging spectroscopy and laser scanning to collect individual-tree RS data from a mixed conifer-angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage-height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within-species trait variation into smaller-scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between-species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis. On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage-height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within-site environmental gradients potentially contributing to the coexistence of the eight abundant species. We conclude that with high-resolution RS data it is possible to delineate individual-tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field-based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual-based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests." @default.
- W3183442019 created "2021-08-02" @default.
- W3183442019 creator A5000291379 @default.
- W3183442019 creator A5015423538 @default.
- W3183442019 creator A5016890115 @default.
- W3183442019 creator A5017159201 @default.
- W3183442019 creator A5017777798 @default.
- W3183442019 creator A5025353875 @default.
- W3183442019 creator A5027870614 @default.
- W3183442019 creator A5040484461 @default.
- W3183442019 creator A5042399202 @default.
- W3183442019 date "2021-07-22" @default.
- W3183442019 modified "2023-10-02" @default.
- W3183442019 title "Remotely sensed between‐individual functional trait variation in a temperate forest" @default.
- W3183442019 cites W1497751391 @default.
- W3183442019 cites W1644720407 @default.
- W3183442019 cites W1672554666 @default.
- W3183442019 cites W1683383071 @default.
- W3183442019 cites W1720178141 @default.
- W3183442019 cites W191041142 @default.
- W3183442019 cites W1922423993 @default.
- W3183442019 cites W195810669 @default.
- W3183442019 cites W1968575417 @default.
- W3183442019 cites W1974591229 @default.
- W3183442019 cites W1976545661 @default.
- W3183442019 cites W1976629311 @default.
- W3183442019 cites W1977084785 @default.
- W3183442019 cites W1990742836 @default.
- W3183442019 cites W1992026897 @default.
- W3183442019 cites W1992335321 @default.
- W3183442019 cites W1993066286 @default.
- W3183442019 cites W1993351110 @default.
- W3183442019 cites W1994507967 @default.
- W3183442019 cites W1996812355 @default.
- W3183442019 cites W1999856162 @default.
- W3183442019 cites W2013144484 @default.
- W3183442019 cites W2013968785 @default.
- W3183442019 cites W2014383059 @default.
- W3183442019 cites W2015340512 @default.
- W3183442019 cites W2022048248 @default.
- W3183442019 cites W2032081489 @default.
- W3183442019 cites W2032530901 @default.
- W3183442019 cites W2034408637 @default.
- W3183442019 cites W2041990935 @default.
- W3183442019 cites W2043342164 @default.
- W3183442019 cites W2048017101 @default.
- W3183442019 cites W2048120915 @default.
- W3183442019 cites W2048463265 @default.
- W3183442019 cites W2059938725 @default.
- W3183442019 cites W2071190035 @default.
- W3183442019 cites W2072139589 @default.
- W3183442019 cites W2072719497 @default.
- W3183442019 cites W2080239438 @default.
- W3183442019 cites W2080958721 @default.
- W3183442019 cites W2081075640 @default.
- W3183442019 cites W2084156954 @default.
- W3183442019 cites W2085916206 @default.
- W3183442019 cites W2086128494 @default.
- W3183442019 cites W2097092607 @default.
- W3183442019 cites W2097774555 @default.
- W3183442019 cites W2098298104 @default.
- W3183442019 cites W2106963733 @default.
- W3183442019 cites W2107625277 @default.
- W3183442019 cites W2108467630 @default.
- W3183442019 cites W2112775986 @default.
- W3183442019 cites W2114973925 @default.
- W3183442019 cites W2115129380 @default.
- W3183442019 cites W2115663229 @default.
- W3183442019 cites W2117852549 @default.
- W3183442019 cites W2121597613 @default.
- W3183442019 cites W2125230412 @default.
- W3183442019 cites W2125783132 @default.
- W3183442019 cites W2128444142 @default.
- W3183442019 cites W2133540825 @default.
- W3183442019 cites W2134213291 @default.
- W3183442019 cites W2134776612 @default.
- W3183442019 cites W2137933418 @default.
- W3183442019 cites W2141052558 @default.
- W3183442019 cites W2142649963 @default.
- W3183442019 cites W2149531726 @default.
- W3183442019 cites W2149690934 @default.
- W3183442019 cites W2150178057 @default.
- W3183442019 cites W2151647593 @default.
- W3183442019 cites W2153478495 @default.
- W3183442019 cites W2155029303 @default.
- W3183442019 cites W2156130242 @default.
- W3183442019 cites W2157754529 @default.
- W3183442019 cites W2160378127 @default.
- W3183442019 cites W2161654618 @default.
- W3183442019 cites W2163816695 @default.
- W3183442019 cites W2172875193 @default.
- W3183442019 cites W2266690409 @default.
- W3183442019 cites W2281759197 @default.
- W3183442019 cites W2323038037 @default.
- W3183442019 cites W2345536912 @default.
- W3183442019 cites W2425812835 @default.
- W3183442019 cites W2463033474 @default.
- W3183442019 cites W2509442644 @default.