Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183451329> ?p ?o ?g. }
- W3183451329 endingPage "33" @default.
- W3183451329 startingPage "1" @default.
- W3183451329 abstract "Recent developments in approximate counting have made startling progress in developing fast algorithmic methods for approximating the number of solutions to constraint satisfaction problems (CSPs) with large arities, using connections to the Lovász Local Lemma. Nevertheless, the boundaries of these methods for CSPs with non-Boolean domain are not well-understood. Our goal in this article is to fill in this gap and obtain strong inapproximability results by studying the prototypical problem in this class of CSPs, hypergraph colourings. More precisely, we focus on the problem of approximately counting q -colourings on K -uniform hypergraphs with bounded degree Δ. An efficient algorithm exists if ({{Delta lesssim frac{q^{K/3-1}}{4^KK^2}}}) [Jain et al. 25 ; He et al. 23 ]. Somewhat surprisingly however, a hardness bound is not known even for the easier problem of finding colourings. For the counting problem, the situation is even less clear and there is no evidence of the right constant controlling the growth of the exponent in terms of K . To this end, we first establish that for general q computational hardness for finding a colouring on simple/linear hypergraphs occurs at Δ ≳ Kq K , almost matching the algorithm from the Lovász Local Lemma. Our second and main contribution is to obtain a far more refined bound for the counting problem that goes well beyond the hardness of finding a colouring and which we conjecture is asymptotically tight (up to constant factors). We show in particular that for all even q ≥ 4 it is NP -hard to approximate the number of colourings when Δ ≳ q K/2 . Our approach is based on considering an auxiliary weighted binary CSP model on graphs, which is obtained by “halving” the K -ary hypergraph constraints. This allows us to utilise reduction techniques available for the graph case, which hinge upon understanding the behaviour of random regular bipartite graphs that serve as gadgets in the reduction. The major challenge in our setting is to analyse the induced matrix norm of the interaction matrix of the new CSP which captures the most likely solutions of the system. In contrast to previous analyses in the literature, the auxiliary CSP demonstrates both symmetry and asymmetry, making the analysis of the optimisation problem severely more complicated and demanding the combination of delicate perturbation arguments and careful asymptotic estimates." @default.
- W3183451329 created "2021-08-02" @default.
- W3183451329 creator A5022706581 @default.
- W3183451329 creator A5085579919 @default.
- W3183451329 creator A5089713528 @default.
- W3183451329 date "2022-12-31" @default.
- W3183451329 modified "2023-10-16" @default.
- W3183451329 title "Inapproximability of Counting Hypergraph Colourings" @default.
- W3183451329 cites W1776308369 @default.
- W3183451329 cites W2000171675 @default.
- W3183451329 cites W2012391569 @default.
- W3183451329 cites W2022392080 @default.
- W3183451329 cites W2036930319 @default.
- W3183451329 cites W2048759201 @default.
- W3183451329 cites W2084392902 @default.
- W3183451329 cites W2099650681 @default.
- W3183451329 cites W2104183200 @default.
- W3183451329 cites W2128452148 @default.
- W3183451329 cites W2171872921 @default.
- W3183451329 cites W2549123310 @default.
- W3183451329 cites W2962726369 @default.
- W3183451329 cites W2966749622 @default.
- W3183451329 cites W3005839441 @default.
- W3183451329 cites W3102182509 @default.
- W3183451329 cites W3111890340 @default.
- W3183451329 cites W3157711583 @default.
- W3183451329 cites W3168950915 @default.
- W3183451329 cites W4238583669 @default.
- W3183451329 doi "https://doi.org/10.1145/3558554" @default.
- W3183451329 hasPublicationYear "2022" @default.
- W3183451329 type Work @default.
- W3183451329 sameAs 3183451329 @default.
- W3183451329 citedByCount "1" @default.
- W3183451329 crossrefType "journal-article" @default.
- W3183451329 hasAuthorship W3183451329A5022706581 @default.
- W3183451329 hasAuthorship W3183451329A5085579919 @default.
- W3183451329 hasAuthorship W3183451329A5089713528 @default.
- W3183451329 hasBestOaLocation W31834513292 @default.
- W3183451329 hasConcept C105795698 @default.
- W3183451329 hasConcept C111472728 @default.
- W3183451329 hasConcept C112955886 @default.
- W3183451329 hasConcept C114614502 @default.
- W3183451329 hasConcept C118615104 @default.
- W3183451329 hasConcept C132525143 @default.
- W3183451329 hasConcept C134306372 @default.
- W3183451329 hasConcept C138885662 @default.
- W3183451329 hasConcept C148764684 @default.
- W3183451329 hasConcept C165064840 @default.
- W3183451329 hasConcept C16592021 @default.
- W3183451329 hasConcept C18903297 @default.
- W3183451329 hasConcept C197657726 @default.
- W3183451329 hasConcept C199360897 @default.
- W3183451329 hasConcept C199622910 @default.
- W3183451329 hasConcept C2777027219 @default.
- W3183451329 hasConcept C2777759810 @default.
- W3183451329 hasConcept C2780388253 @default.
- W3183451329 hasConcept C2780586882 @default.
- W3183451329 hasConcept C2780990831 @default.
- W3183451329 hasConcept C2781221856 @default.
- W3183451329 hasConcept C311688 @default.
- W3183451329 hasConcept C33923547 @default.
- W3183451329 hasConcept C34388435 @default.
- W3183451329 hasConcept C39637292 @default.
- W3183451329 hasConcept C41008148 @default.
- W3183451329 hasConcept C41895202 @default.
- W3183451329 hasConcept C46757340 @default.
- W3183451329 hasConcept C49937458 @default.
- W3183451329 hasConcept C71017364 @default.
- W3183451329 hasConcept C77553402 @default.
- W3183451329 hasConcept C86803240 @default.
- W3183451329 hasConceptScore W3183451329C105795698 @default.
- W3183451329 hasConceptScore W3183451329C111472728 @default.
- W3183451329 hasConceptScore W3183451329C112955886 @default.
- W3183451329 hasConceptScore W3183451329C114614502 @default.
- W3183451329 hasConceptScore W3183451329C118615104 @default.
- W3183451329 hasConceptScore W3183451329C132525143 @default.
- W3183451329 hasConceptScore W3183451329C134306372 @default.
- W3183451329 hasConceptScore W3183451329C138885662 @default.
- W3183451329 hasConceptScore W3183451329C148764684 @default.
- W3183451329 hasConceptScore W3183451329C165064840 @default.
- W3183451329 hasConceptScore W3183451329C16592021 @default.
- W3183451329 hasConceptScore W3183451329C18903297 @default.
- W3183451329 hasConceptScore W3183451329C197657726 @default.
- W3183451329 hasConceptScore W3183451329C199360897 @default.
- W3183451329 hasConceptScore W3183451329C199622910 @default.
- W3183451329 hasConceptScore W3183451329C2777027219 @default.
- W3183451329 hasConceptScore W3183451329C2777759810 @default.
- W3183451329 hasConceptScore W3183451329C2780388253 @default.
- W3183451329 hasConceptScore W3183451329C2780586882 @default.
- W3183451329 hasConceptScore W3183451329C2780990831 @default.
- W3183451329 hasConceptScore W3183451329C2781221856 @default.
- W3183451329 hasConceptScore W3183451329C311688 @default.
- W3183451329 hasConceptScore W3183451329C33923547 @default.
- W3183451329 hasConceptScore W3183451329C34388435 @default.
- W3183451329 hasConceptScore W3183451329C39637292 @default.
- W3183451329 hasConceptScore W3183451329C41008148 @default.
- W3183451329 hasConceptScore W3183451329C41895202 @default.
- W3183451329 hasConceptScore W3183451329C46757340 @default.