Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183451374> ?p ?o ?g. }
- W3183451374 endingPage "2917" @default.
- W3183451374 startingPage "2917" @default.
- W3183451374 abstract "Hyperspectral imagery has been widely used in precision agriculture due to its rich spectral characteristics. With the rapid development of remote sensing technology, the airborne hyperspectral imagery shows detailed spatial information and temporal flexibility, which open a new way to accurate agricultural monitoring. To extract crop types from the airborne hyperspectral images, we propose a fine classification method based on multi-feature fusion and deep learning. In this research, the morphological profiles, GLCM texture and endmember abundance features are leveraged to exploit the spatial information of the hyperspectral imagery. Then, the multiple spatial information is fused with the original spectral information to generate classification result by using the deep neural network with conditional random field (DNN+CRF) model. Specifically, the deep neural network (DNN) is a deep recognition model which can extract depth features and mine the potential information of data. As a discriminant model, conditional random field (CRF) considers both spatial and contextual information to reduce the misclassification noises while keeping the object boundaries. Moreover, three multiple feature fusion approaches, namely feature stacking, decision fusion and probability fusion, are taken into account. In the experiments, two airborne hyperspectral remote sensing datasets (Honghu dataset and Xiong’an dataset) are used. The experimental results show that the classification performance of the proposed method is satisfactory, where the salt and pepper noise is decreased, and the boundary of the ground object is preserved." @default.
- W3183451374 created "2021-08-02" @default.
- W3183451374 creator A5000586630 @default.
- W3183451374 creator A5005874022 @default.
- W3183451374 creator A5007209836 @default.
- W3183451374 creator A5013423608 @default.
- W3183451374 creator A5030691366 @default.
- W3183451374 creator A5063038804 @default.
- W3183451374 creator A5077410212 @default.
- W3183451374 creator A5084718593 @default.
- W3183451374 date "2021-07-24" @default.
- W3183451374 modified "2023-10-16" @default.
- W3183451374 title "Crops Fine Classification in Airborne Hyperspectral Imagery Based on Multi-Feature Fusion and Deep Learning" @default.
- W3183451374 cites W1966580635 @default.
- W3183451374 cites W1988048998 @default.
- W3183451374 cites W1997565609 @default.
- W3183451374 cites W2024700522 @default.
- W3183451374 cites W2039612012 @default.
- W3183451374 cites W2052374076 @default.
- W3183451374 cites W2077792904 @default.
- W3183451374 cites W2104269704 @default.
- W3183451374 cites W2109255472 @default.
- W3183451374 cites W2114819256 @default.
- W3183451374 cites W2131864940 @default.
- W3183451374 cites W2134594501 @default.
- W3183451374 cites W2136251662 @default.
- W3183451374 cites W2136922672 @default.
- W3183451374 cites W2145649962 @default.
- W3183451374 cites W2686061342 @default.
- W3183451374 cites W2735165202 @default.
- W3183451374 cites W2884963893 @default.
- W3183451374 cites W2898741971 @default.
- W3183451374 cites W2903063870 @default.
- W3183451374 cites W2926217049 @default.
- W3183451374 cites W2970183547 @default.
- W3183451374 cites W2998217597 @default.
- W3183451374 cites W3106797032 @default.
- W3183451374 cites W3136545240 @default.
- W3183451374 cites W3137564971 @default.
- W3183451374 cites W3138254394 @default.
- W3183451374 cites W3138406528 @default.
- W3183451374 cites W3158254415 @default.
- W3183451374 doi "https://doi.org/10.3390/rs13152917" @default.
- W3183451374 hasPublicationYear "2021" @default.
- W3183451374 type Work @default.
- W3183451374 sameAs 3183451374 @default.
- W3183451374 citedByCount "23" @default.
- W3183451374 countsByYear W31834513742021 @default.
- W3183451374 countsByYear W31834513742022 @default.
- W3183451374 countsByYear W31834513742023 @default.
- W3183451374 crossrefType "journal-article" @default.
- W3183451374 hasAuthorship W3183451374A5000586630 @default.
- W3183451374 hasAuthorship W3183451374A5005874022 @default.
- W3183451374 hasAuthorship W3183451374A5007209836 @default.
- W3183451374 hasAuthorship W3183451374A5013423608 @default.
- W3183451374 hasAuthorship W3183451374A5030691366 @default.
- W3183451374 hasAuthorship W3183451374A5063038804 @default.
- W3183451374 hasAuthorship W3183451374A5077410212 @default.
- W3183451374 hasAuthorship W3183451374A5084718593 @default.
- W3183451374 hasBestOaLocation W31834513741 @default.
- W3183451374 hasConcept C108583219 @default.
- W3183451374 hasConcept C124504099 @default.
- W3183451374 hasConcept C127313418 @default.
- W3183451374 hasConcept C138885662 @default.
- W3183451374 hasConcept C152565575 @default.
- W3183451374 hasConcept C153180895 @default.
- W3183451374 hasConcept C154945302 @default.
- W3183451374 hasConcept C159078339 @default.
- W3183451374 hasConcept C159620131 @default.
- W3183451374 hasConcept C169258074 @default.
- W3183451374 hasConcept C2776401178 @default.
- W3183451374 hasConcept C2778045648 @default.
- W3183451374 hasConcept C41008148 @default.
- W3183451374 hasConcept C41895202 @default.
- W3183451374 hasConcept C50644808 @default.
- W3183451374 hasConcept C58237817 @default.
- W3183451374 hasConcept C62649853 @default.
- W3183451374 hasConcept C89600930 @default.
- W3183451374 hasConceptScore W3183451374C108583219 @default.
- W3183451374 hasConceptScore W3183451374C124504099 @default.
- W3183451374 hasConceptScore W3183451374C127313418 @default.
- W3183451374 hasConceptScore W3183451374C138885662 @default.
- W3183451374 hasConceptScore W3183451374C152565575 @default.
- W3183451374 hasConceptScore W3183451374C153180895 @default.
- W3183451374 hasConceptScore W3183451374C154945302 @default.
- W3183451374 hasConceptScore W3183451374C159078339 @default.
- W3183451374 hasConceptScore W3183451374C159620131 @default.
- W3183451374 hasConceptScore W3183451374C169258074 @default.
- W3183451374 hasConceptScore W3183451374C2776401178 @default.
- W3183451374 hasConceptScore W3183451374C2778045648 @default.
- W3183451374 hasConceptScore W3183451374C41008148 @default.
- W3183451374 hasConceptScore W3183451374C41895202 @default.
- W3183451374 hasConceptScore W3183451374C50644808 @default.
- W3183451374 hasConceptScore W3183451374C58237817 @default.
- W3183451374 hasConceptScore W3183451374C62649853 @default.
- W3183451374 hasConceptScore W3183451374C89600930 @default.
- W3183451374 hasIssue "15" @default.
- W3183451374 hasLocation W31834513741 @default.