Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183480749> ?p ?o ?g. }
- W3183480749 abstract "In this paper, we introduce a method for multivariate function approximation using function evaluations, Chebyshev polynomials, and tensor-based compression techniques via the Tucker format. We develop novel randomized techniques to accomplish the tensor compression, provide a detailed analysis of the computational costs, provide insight into the error of the resulting approximations, and discuss the benefits of the proposed approaches. We also apply the tensor-based function approximation to develop low-rank matrix approximations to kernel matrices that describe pairwise interactions between two sets of points; the resulting low-rank approximations are efficient to compute and store (the complexity is linear in the number of points). We present an adaptive version of the function and kernel approximation that determines an approximation that satisfies a user-specified relative error over a set of random points. We extend our approach to the case where the kernel requires repeated evaluations for many values of (hyper)parameters that govern the kernel. We give detailed numerical experiments on example problems involving multivariate function approximation, low-rank matrix approximations of kernel matrices involving well-separated clusters of sources and target points, and a global low-rank approximation of kernel matrices with an application to Gaussian processes. We observe speedups up to 18X over standard matrix-based approaches." @default.
- W3183480749 created "2021-08-02" @default.
- W3183480749 creator A5008317374 @default.
- W3183480749 creator A5041916316 @default.
- W3183480749 creator A5045561492 @default.
- W3183480749 date "2022-10-01" @default.
- W3183480749 modified "2023-09-24" @default.
- W3183480749 title "Efficient randomized tensor-based algorithms for function approximation and low-rank kernel interactions" @default.
- W3183480749 cites W1584657480 @default.
- W3183480749 cites W1841486359 @default.
- W3183480749 cites W1858056047 @default.
- W3183480749 cites W1989786408 @default.
- W3183480749 cites W2000693185 @default.
- W3183480749 cites W2013912476 @default.
- W3183480749 cites W2018419001 @default.
- W3183480749 cites W2024165284 @default.
- W3183480749 cites W2033244207 @default.
- W3183480749 cites W2041636959 @default.
- W3183480749 cites W2051395078 @default.
- W3183480749 cites W2068306188 @default.
- W3183480749 cites W2083206954 @default.
- W3183480749 cites W2088961409 @default.
- W3183480749 cites W2089958289 @default.
- W3183480749 cites W2110649199 @default.
- W3183480749 cites W2117756735 @default.
- W3183480749 cites W2117926105 @default.
- W3183480749 cites W2119233169 @default.
- W3183480749 cites W2122137889 @default.
- W3183480749 cites W2160431995 @default.
- W3183480749 cites W2199796497 @default.
- W3183480749 cites W2238549287 @default.
- W3183480749 cites W2298381282 @default.
- W3183480749 cites W2604937039 @default.
- W3183480749 cites W2624472532 @default.
- W3183480749 cites W2760223394 @default.
- W3183480749 cites W2779765343 @default.
- W3183480749 cites W2782776503 @default.
- W3183480749 cites W2808075698 @default.
- W3183480749 cites W2808671516 @default.
- W3183480749 cites W2962693312 @default.
- W3183480749 cites W2962823441 @default.
- W3183480749 cites W2962826067 @default.
- W3183480749 cites W2962947392 @default.
- W3183480749 cites W2963108114 @default.
- W3183480749 cites W2963482218 @default.
- W3183480749 cites W2963670229 @default.
- W3183480749 cites W2964020076 @default.
- W3183480749 cites W3000508506 @default.
- W3183480749 cites W3003894950 @default.
- W3183480749 cites W3008842210 @default.
- W3183480749 cites W3044852522 @default.
- W3183480749 cites W3102489672 @default.
- W3183480749 cites W3127717271 @default.
- W3183480749 cites W3174047779 @default.
- W3183480749 cites W3212284511 @default.
- W3183480749 cites W4213238923 @default.
- W3183480749 cites W4254246953 @default.
- W3183480749 cites W4255975175 @default.
- W3183480749 cites W4312258136 @default.
- W3183480749 doi "https://doi.org/10.1007/s10444-022-09979-7" @default.
- W3183480749 hasPublicationYear "2022" @default.
- W3183480749 type Work @default.
- W3183480749 sameAs 3183480749 @default.
- W3183480749 citedByCount "0" @default.
- W3183480749 crossrefType "journal-article" @default.
- W3183480749 hasAuthorship W3183480749A5008317374 @default.
- W3183480749 hasAuthorship W3183480749A5041916316 @default.
- W3183480749 hasAuthorship W3183480749A5045561492 @default.
- W3183480749 hasBestOaLocation W31834807492 @default.
- W3183480749 hasConcept C106487976 @default.
- W3183480749 hasConcept C11413529 @default.
- W3183480749 hasConcept C114614502 @default.
- W3183480749 hasConcept C118615104 @default.
- W3183480749 hasConcept C121332964 @default.
- W3183480749 hasConcept C122280245 @default.
- W3183480749 hasConcept C12267149 @default.
- W3183480749 hasConcept C126255220 @default.
- W3183480749 hasConcept C134306372 @default.
- W3183480749 hasConcept C145242015 @default.
- W3183480749 hasConcept C148764684 @default.
- W3183480749 hasConcept C154945302 @default.
- W3183480749 hasConcept C155281189 @default.
- W3183480749 hasConcept C159985019 @default.
- W3183480749 hasConcept C163716315 @default.
- W3183480749 hasConcept C164226766 @default.
- W3183480749 hasConcept C192562407 @default.
- W3183480749 hasConcept C202444582 @default.
- W3183480749 hasConcept C28826006 @default.
- W3183480749 hasConcept C33923547 @default.
- W3183480749 hasConcept C41008148 @default.
- W3183480749 hasConcept C50644808 @default.
- W3183480749 hasConcept C62520636 @default.
- W3183480749 hasConcept C7218915 @default.
- W3183480749 hasConcept C74193536 @default.
- W3183480749 hasConcept C90199385 @default.
- W3183480749 hasConcept C91873725 @default.
- W3183480749 hasConceptScore W3183480749C106487976 @default.
- W3183480749 hasConceptScore W3183480749C11413529 @default.
- W3183480749 hasConceptScore W3183480749C114614502 @default.
- W3183480749 hasConceptScore W3183480749C118615104 @default.