Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183485661> ?p ?o ?g. }
- W3183485661 endingPage "107302" @default.
- W3183485661 startingPage "107302" @default.
- W3183485661 abstract "Matrix completion models have been receiving keen attention due to their wide applications in science and engineering. However, the majority of these models assumes a symmetric noise distribution in their completion processes and uses conditional mean to characterize data distribution in a data set, the assumption of which incurs noticeable bias toward outliers. Recognizing the fact that noise distribution tends to be asymmetric in the real-world, this paper proposes a novel Deep Quantile Matrix Completion model, abbreviated as DQMC, which aims to accurately capture noise distribution in a data set by modeling conditional quantile of the data set instead of its conditional mean as traditionally handled by many state-of-the-art methods. Implemented via a deep computing paradigm, the newly proposed model maps a data set from its input space to the latent spaces through a two-branched deep autoencoder network. Such a mapping can effectively capture complex information latent in the data set. The proposed model is empowered by two key designed elements, including: (1) its two-branched deep autoencoder network that provides a flexible computing pathway to attain completion results with a high quality; (2) the introduction of a quantile loss function in combination with the proposed deep network, leading to a new unsupervised learning algorithm for tackling the matrix completion tasks with a superior capability. Comparative experimental results consistently demonstrate the superiority of the proposed DQMC model in conducting the top-N recommendation tasks involving both explicit and implicit rating data sets with respect to a series of state-of-the-art recommendation algorithms." @default.
- W3183485661 created "2021-08-02" @default.
- W3183485661 creator A5046202286 @default.
- W3183485661 creator A5069149938 @default.
- W3183485661 date "2021-09-01" @default.
- W3183485661 modified "2023-10-02" @default.
- W3183485661 title "A novel deep quantile matrix completion model for top-N recommendation" @default.
- W3183485661 cites W1720514416 @default.
- W3183485661 cites W191374941 @default.
- W3183485661 cites W1966157242 @default.
- W3183485661 cites W1969698720 @default.
- W3183485661 cites W1987431925 @default.
- W3183485661 cites W1994389483 @default.
- W3183485661 cites W1996162665 @default.
- W3183485661 cites W1996905516 @default.
- W3183485661 cites W1998073888 @default.
- W3183485661 cites W2028988057 @default.
- W3183485661 cites W2042281163 @default.
- W3183485661 cites W2043436310 @default.
- W3183485661 cites W2060204507 @default.
- W3183485661 cites W2084983808 @default.
- W3183485661 cites W2089088255 @default.
- W3183485661 cites W2098000549 @default.
- W3183485661 cites W2100495367 @default.
- W3183485661 cites W2103972604 @default.
- W3183485661 cites W2108433027 @default.
- W3183485661 cites W2114079787 @default.
- W3183485661 cites W2117420919 @default.
- W3183485661 cites W2149194912 @default.
- W3183485661 cites W2150886314 @default.
- W3183485661 cites W2157881433 @default.
- W3183485661 cites W2253995343 @default.
- W3183485661 cites W2294540049 @default.
- W3183485661 cites W2295739661 @default.
- W3183485661 cites W2340502990 @default.
- W3183485661 cites W2547411571 @default.
- W3183485661 cites W2603841037 @default.
- W3183485661 cites W2604662567 @default.
- W3183485661 cites W2605146283 @default.
- W3183485661 cites W2605246672 @default.
- W3183485661 cites W2605350416 @default.
- W3183485661 cites W2620814161 @default.
- W3183485661 cites W2725606191 @default.
- W3183485661 cites W2726858467 @default.
- W3183485661 cites W2740920897 @default.
- W3183485661 cites W2763136156 @default.
- W3183485661 cites W2765145408 @default.
- W3183485661 cites W2782259251 @default.
- W3183485661 cites W2795416201 @default.
- W3183485661 cites W2800011138 @default.
- W3183485661 cites W2807848202 @default.
- W3183485661 cites W2807957280 @default.
- W3183485661 cites W2887230156 @default.
- W3183485661 cites W2904255843 @default.
- W3183485661 cites W2907429861 @default.
- W3183485661 cites W2907907589 @default.
- W3183485661 cites W2912057614 @default.
- W3183485661 cites W2927931735 @default.
- W3183485661 cites W2941921672 @default.
- W3183485661 cites W2962746029 @default.
- W3183485661 cites W2963323306 @default.
- W3183485661 cites W2985663642 @default.
- W3183485661 cites W2989585950 @default.
- W3183485661 cites W2999309933 @default.
- W3183485661 cites W3004584189 @default.
- W3183485661 cites W3101501663 @default.
- W3183485661 cites W3125645198 @default.
- W3183485661 cites W3172256628 @default.
- W3183485661 cites W4241996101 @default.
- W3183485661 doi "https://doi.org/10.1016/j.knosys.2021.107302" @default.
- W3183485661 hasPublicationYear "2021" @default.
- W3183485661 type Work @default.
- W3183485661 sameAs 3183485661 @default.
- W3183485661 citedByCount "5" @default.
- W3183485661 countsByYear W31834856612022 @default.
- W3183485661 countsByYear W31834856612023 @default.
- W3183485661 crossrefType "journal-article" @default.
- W3183485661 hasAuthorship W3183485661A5046202286 @default.
- W3183485661 hasAuthorship W3183485661A5069149938 @default.
- W3183485661 hasConcept C101738243 @default.
- W3183485661 hasConcept C105795698 @default.
- W3183485661 hasConcept C108583219 @default.
- W3183485661 hasConcept C11413529 @default.
- W3183485661 hasConcept C115961682 @default.
- W3183485661 hasConcept C118671147 @default.
- W3183485661 hasConcept C119857082 @default.
- W3183485661 hasConcept C121332964 @default.
- W3183485661 hasConcept C124101348 @default.
- W3183485661 hasConcept C154945302 @default.
- W3183485661 hasConcept C160920958 @default.
- W3183485661 hasConcept C163716315 @default.
- W3183485661 hasConcept C177264268 @default.
- W3183485661 hasConcept C199360897 @default.
- W3183485661 hasConcept C2778459887 @default.
- W3183485661 hasConcept C33923547 @default.
- W3183485661 hasConcept C41008148 @default.
- W3183485661 hasConcept C58489278 @default.
- W3183485661 hasConcept C62520636 @default.