Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183500756> ?p ?o ?g. }
- W3183500756 abstract "In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still a challenging task to design a calibration-free system, since there exists a significant variability of EEG signals among different subjects and recording sessions. As deep learning has received much research attention in recent years, many efforts have been made to use deep learning methods for EEG signal recognition. However, existing works mostly treat deep learning models as blackbox classifiers, while what have been learned by the models and to which extent they are affected by the noise from EEG data are still underexplored. In this paper, we develop a novel convolutional neural network that can explain its decision by highlighting the local areas of the input sample that contain important information for the classification. The network has a compact structure for ease of interpretation and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.4%-72.68% and state-of-art deep learning methods of 63.90%-65.61%. Visualization results show that the model has learned to recognize biologically explainable features from EEG signals, e.g., Alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples and how the model is affected by artifacts and noise in the data. Our work illustrates a promising direction on using interpretable deep learning models to discover meaning patterns related to different mental states from complex EEG signals." @default.
- W3183500756 created "2021-08-02" @default.
- W3183500756 creator A5014404405 @default.
- W3183500756 creator A5054070832 @default.
- W3183500756 creator A5061394360 @default.
- W3183500756 creator A5080365578 @default.
- W3183500756 creator A5090186201 @default.
- W3183500756 date "2021-05-30" @default.
- W3183500756 modified "2023-09-27" @default.
- W3183500756 title "EEG-based Cross-Subject Driver Drowsiness Recognition with Interpretable CNN." @default.
- W3183500756 cites W1522301498 @default.
- W3183500756 cites W1686810756 @default.
- W3183500756 cites W1799366690 @default.
- W3183500756 cites W1904701389 @default.
- W3183500756 cites W1983946671 @default.
- W3183500756 cites W1996324413 @default.
- W3183500756 cites W2005305331 @default.
- W3183500756 cites W2017144821 @default.
- W3183500756 cites W2030913893 @default.
- W3183500756 cites W2050180317 @default.
- W3183500756 cites W2063682302 @default.
- W3183500756 cites W2077563416 @default.
- W3183500756 cites W2079838091 @default.
- W3183500756 cites W2087660339 @default.
- W3183500756 cites W2098330912 @default.
- W3183500756 cites W2098725211 @default.
- W3183500756 cites W2122515425 @default.
- W3183500756 cites W2132360759 @default.
- W3183500756 cites W2144589738 @default.
- W3183500756 cites W2146182319 @default.
- W3183500756 cites W2160815625 @default.
- W3183500756 cites W2164082066 @default.
- W3183500756 cites W2295107390 @default.
- W3183500756 cites W2321084042 @default.
- W3183500756 cites W2414309931 @default.
- W3183500756 cites W2417143007 @default.
- W3183500756 cites W2528525647 @default.
- W3183500756 cites W2531409750 @default.
- W3183500756 cites W2601938104 @default.
- W3183500756 cites W2612445135 @default.
- W3183500756 cites W2741907166 @default.
- W3183500756 cites W2769429860 @default.
- W3183500756 cites W2784400627 @default.
- W3183500756 cites W2796438033 @default.
- W3183500756 cites W2799501394 @default.
- W3183500756 cites W2883597459 @default.
- W3183500756 cites W2887814324 @default.
- W3183500756 cites W2902034646 @default.
- W3183500756 cites W2916188667 @default.
- W3183500756 cites W2918092040 @default.
- W3183500756 cites W2919403121 @default.
- W3183500756 cites W2962699674 @default.
- W3183500756 cites W2963355311 @default.
- W3183500756 cites W2963781258 @default.
- W3183500756 cites W2968094935 @default.
- W3183500756 cites W2992520770 @default.
- W3183500756 cites W3004459648 @default.
- W3183500756 cites W3010030563 @default.
- W3183500756 cites W3030420691 @default.
- W3183500756 cites W3046840567 @default.
- W3183500756 cites W3086685176 @default.
- W3183500756 cites W3102455230 @default.
- W3183500756 cites W3158433777 @default.
- W3183500756 cites W51628748 @default.
- W3183500756 hasPublicationYear "2021" @default.
- W3183500756 type Work @default.
- W3183500756 sameAs 3183500756 @default.
- W3183500756 citedByCount "0" @default.
- W3183500756 crossrefType "posted-content" @default.
- W3183500756 hasAuthorship W3183500756A5014404405 @default.
- W3183500756 hasAuthorship W3183500756A5054070832 @default.
- W3183500756 hasAuthorship W3183500756A5061394360 @default.
- W3183500756 hasAuthorship W3183500756A5080365578 @default.
- W3183500756 hasAuthorship W3183500756A5090186201 @default.
- W3183500756 hasConcept C108583219 @default.
- W3183500756 hasConcept C115961682 @default.
- W3183500756 hasConcept C118552586 @default.
- W3183500756 hasConcept C119857082 @default.
- W3183500756 hasConcept C151730666 @default.
- W3183500756 hasConcept C153180895 @default.
- W3183500756 hasConcept C154945302 @default.
- W3183500756 hasConcept C15744967 @default.
- W3183500756 hasConcept C162324750 @default.
- W3183500756 hasConcept C187736073 @default.
- W3183500756 hasConcept C2779343474 @default.
- W3183500756 hasConcept C2780451532 @default.
- W3183500756 hasConcept C28490314 @default.
- W3183500756 hasConcept C36464697 @default.
- W3183500756 hasConcept C41008148 @default.
- W3183500756 hasConcept C522805319 @default.
- W3183500756 hasConcept C81363708 @default.
- W3183500756 hasConcept C86803240 @default.
- W3183500756 hasConcept C99498987 @default.
- W3183500756 hasConceptScore W3183500756C108583219 @default.
- W3183500756 hasConceptScore W3183500756C115961682 @default.
- W3183500756 hasConceptScore W3183500756C118552586 @default.
- W3183500756 hasConceptScore W3183500756C119857082 @default.
- W3183500756 hasConceptScore W3183500756C151730666 @default.
- W3183500756 hasConceptScore W3183500756C153180895 @default.
- W3183500756 hasConceptScore W3183500756C154945302 @default.