Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183524393> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3183524393 endingPage "4953" @default.
- W3183524393 startingPage "4953" @default.
- W3183524393 abstract "Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones." @default.
- W3183524393 created "2021-08-02" @default.
- W3183524393 creator A5028412459 @default.
- W3183524393 creator A5040412307 @default.
- W3183524393 creator A5071094883 @default.
- W3183524393 date "2021-07-21" @default.
- W3183524393 modified "2023-10-03" @default.
- W3183524393 title "Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks" @default.
- W3183524393 cites W2052666245 @default.
- W3183524393 cites W2064675550 @default.
- W3183524393 cites W2133125644 @default.
- W3183524393 cites W2248342438 @default.
- W3183524393 cites W2464322612 @default.
- W3183524393 cites W2516883896 @default.
- W3183524393 cites W2570915410 @default.
- W3183524393 cites W2607172015 @default.
- W3183524393 cites W2731587879 @default.
- W3183524393 cites W2766224648 @default.
- W3183524393 cites W2796789676 @default.
- W3183524393 cites W2797821788 @default.
- W3183524393 cites W2902739487 @default.
- W3183524393 cites W2908013175 @default.
- W3183524393 cites W2911266838 @default.
- W3183524393 cites W2990204812 @default.
- W3183524393 cites W3096676008 @default.
- W3183524393 cites W3098357269 @default.
- W3183524393 doi "https://doi.org/10.3390/s21154953" @default.
- W3183524393 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8348319" @default.
- W3183524393 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34372189" @default.
- W3183524393 hasPublicationYear "2021" @default.
- W3183524393 type Work @default.
- W3183524393 sameAs 3183524393 @default.
- W3183524393 citedByCount "24" @default.
- W3183524393 countsByYear W31835243932021 @default.
- W3183524393 countsByYear W31835243932022 @default.
- W3183524393 countsByYear W31835243932023 @default.
- W3183524393 crossrefType "journal-article" @default.
- W3183524393 hasAuthorship W3183524393A5028412459 @default.
- W3183524393 hasAuthorship W3183524393A5040412307 @default.
- W3183524393 hasAuthorship W3183524393A5071094883 @default.
- W3183524393 hasBestOaLocation W31835243933 @default.
- W3183524393 hasConcept C108583219 @default.
- W3183524393 hasConcept C116834253 @default.
- W3183524393 hasConcept C119857082 @default.
- W3183524393 hasConcept C154945302 @default.
- W3183524393 hasConcept C2778739407 @default.
- W3183524393 hasConcept C37736160 @default.
- W3183524393 hasConcept C38652104 @default.
- W3183524393 hasConcept C41008148 @default.
- W3183524393 hasConcept C54355233 @default.
- W3183524393 hasConcept C59519942 @default.
- W3183524393 hasConcept C59822182 @default.
- W3183524393 hasConcept C81363708 @default.
- W3183524393 hasConcept C86803240 @default.
- W3183524393 hasConceptScore W3183524393C108583219 @default.
- W3183524393 hasConceptScore W3183524393C116834253 @default.
- W3183524393 hasConceptScore W3183524393C119857082 @default.
- W3183524393 hasConceptScore W3183524393C154945302 @default.
- W3183524393 hasConceptScore W3183524393C2778739407 @default.
- W3183524393 hasConceptScore W3183524393C37736160 @default.
- W3183524393 hasConceptScore W3183524393C38652104 @default.
- W3183524393 hasConceptScore W3183524393C41008148 @default.
- W3183524393 hasConceptScore W3183524393C54355233 @default.
- W3183524393 hasConceptScore W3183524393C59519942 @default.
- W3183524393 hasConceptScore W3183524393C59822182 @default.
- W3183524393 hasConceptScore W3183524393C81363708 @default.
- W3183524393 hasConceptScore W3183524393C86803240 @default.
- W3183524393 hasFunder F4320322472 @default.
- W3183524393 hasIssue "15" @default.
- W3183524393 hasLocation W31835243931 @default.
- W3183524393 hasLocation W31835243932 @default.
- W3183524393 hasLocation W31835243933 @default.
- W3183524393 hasLocation W31835243934 @default.
- W3183524393 hasOpenAccess W3183524393 @default.
- W3183524393 hasPrimaryLocation W31835243931 @default.
- W3183524393 hasRelatedWork W2337926734 @default.
- W3183524393 hasRelatedWork W2799614062 @default.
- W3183524393 hasRelatedWork W3003770199 @default.
- W3183524393 hasRelatedWork W3021430260 @default.
- W3183524393 hasRelatedWork W3036934147 @default.
- W3183524393 hasRelatedWork W3136076031 @default.
- W3183524393 hasRelatedWork W3166467183 @default.
- W3183524393 hasRelatedWork W3173182854 @default.
- W3183524393 hasRelatedWork W4308353688 @default.
- W3183524393 hasRelatedWork W4311257506 @default.
- W3183524393 hasVolume "21" @default.
- W3183524393 isParatext "false" @default.
- W3183524393 isRetracted "false" @default.
- W3183524393 magId "3183524393" @default.
- W3183524393 workType "article" @default.