Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183539415> ?p ?o ?g. }
- W3183539415 abstract "Abstract Additive manufacturing (AM) has been extensively investigated in recent years to explore its application in a wide range of engineering functionalities, such as mechanical, acoustic, thermal, and electrical properties. A data-driven approach is proposed to investigate the influence of major fabrication parameters in the laser-based additively manufactured Ti–6Al–4V. Two separate laser-based powder bed fusion techniques, i.e., selective laser melting (SLM) and direct metal laser sintering (DMLS), have been investigated and several data regarding the tensile properties of Ti–6Al–4V alloy with their corresponding fabrication parameters are collected from open literature. Statistical data analysis is performed for four fabrication parameters (scanning speed, laser power, hatch spacing, and powder layer thickness) and three postfabrication parameters (heating temperature, heating time, and hot isostatically pressed or not) which are major influencing factors and have been investigated by several researchers to identify their behavior on the static mechanical properties (i.e., yielding strength, ultimate tensile strength, and elongation). To identify the behavior of the relationship between the input and output parameters, both linear regression analysis and artificial neural network (ANN) models are developed using 53 and 100 datasets for SLM and DMLS processes, respectively. The linear regression model resulted in an average R squared value of 0.351 and 0.507 compared to 0.908 and 0.833 in the case of nonlinear ANN modeling for SLM and DMLS based modeling, respectively. Both local and global sensitivity analyses are carried out to identify the important factors for future optimal design. Based on the current study, local sensitivity analysis (SA) suggests that SLM is most sensitive to laser power, scanning speed, and heat treatment temperature while DMLS is most sensitive to heat treatment temperature, hatch spacing, and laser power. In the case of DMLS fabricated Ti–6Al–4V alloy, laser power, and scan speed are found to be the most impactful input parameters for tensile properties of the alloy while heating time turned out to be the least affecting parameter. The global sensitivity analysis results can be used to tailor the alloy's static properties as per the requirement while results from local sensitivity analysis could be useful to optimize the already tailored design properties. Sobol's global sensitivity analysis implicates laser power, heating temperature, and hatch spacing to be the most influential parameters for alloy strength while powder layer thickness followed by scanning speed to be the prominent parameters for elongation for SLM fabricated Ti–6Al–4V alloy. Future work would still be needed to eradicate some of the limitations of this study related to limited dataset availability." @default.
- W3183539415 created "2021-08-02" @default.
- W3183539415 creator A5000625439 @default.
- W3183539415 creator A5010479652 @default.
- W3183539415 creator A5016721358 @default.
- W3183539415 creator A5027855773 @default.
- W3183539415 creator A5034929507 @default.
- W3183539415 creator A5086340757 @default.
- W3183539415 date "2021-08-27" @default.
- W3183539415 modified "2023-09-25" @default.
- W3183539415 title "Data-Driven Sensitivity Analysis for Static Mechanical Properties of Additively Manufactured Ti–6Al–4V" @default.
- W3183539415 cites W1590646663 @default.
- W3183539415 cites W1968886786 @default.
- W3183539415 cites W2011923356 @default.
- W3183539415 cites W2022940082 @default.
- W3183539415 cites W2036100599 @default.
- W3183539415 cites W2037752923 @default.
- W3183539415 cites W2042310099 @default.
- W3183539415 cites W2042947602 @default.
- W3183539415 cites W2043995867 @default.
- W3183539415 cites W2049039109 @default.
- W3183539415 cites W2049993169 @default.
- W3183539415 cites W2065589878 @default.
- W3183539415 cites W2067801844 @default.
- W3183539415 cites W2080554769 @default.
- W3183539415 cites W2083430307 @default.
- W3183539415 cites W2093872829 @default.
- W3183539415 cites W2094139534 @default.
- W3183539415 cites W2108272642 @default.
- W3183539415 cites W2112042205 @default.
- W3183539415 cites W2112617887 @default.
- W3183539415 cites W2137300432 @default.
- W3183539415 cites W2192772080 @default.
- W3183539415 cites W2204647836 @default.
- W3183539415 cites W2344098069 @default.
- W3183539415 cites W2405744025 @default.
- W3183539415 cites W2599046197 @default.
- W3183539415 cites W2599122131 @default.
- W3183539415 cites W2669499391 @default.
- W3183539415 cites W2720993591 @default.
- W3183539415 cites W2767755556 @default.
- W3183539415 cites W2771540955 @default.
- W3183539415 cites W2777689514 @default.
- W3183539415 cites W2782924686 @default.
- W3183539415 cites W2794716106 @default.
- W3183539415 cites W2795108952 @default.
- W3183539415 cites W2804446457 @default.
- W3183539415 cites W2898514189 @default.
- W3183539415 cites W2907819227 @default.
- W3183539415 cites W2921054435 @default.
- W3183539415 cites W2930365861 @default.
- W3183539415 cites W2946820774 @default.
- W3183539415 cites W2963513636 @default.
- W3183539415 cites W2972432939 @default.
- W3183539415 cites W3005035628 @default.
- W3183539415 cites W3009906211 @default.
- W3183539415 cites W3102175899 @default.
- W3183539415 cites W947063803 @default.
- W3183539415 doi "https://doi.org/10.1115/1.4051799" @default.
- W3183539415 hasPublicationYear "2021" @default.
- W3183539415 type Work @default.
- W3183539415 sameAs 3183539415 @default.
- W3183539415 citedByCount "4" @default.
- W3183539415 countsByYear W31835394152022 @default.
- W3183539415 countsByYear W31835394152023 @default.
- W3183539415 crossrefType "journal-article" @default.
- W3183539415 hasAuthorship W3183539415A5000625439 @default.
- W3183539415 hasAuthorship W3183539415A5010479652 @default.
- W3183539415 hasAuthorship W3183539415A5016721358 @default.
- W3183539415 hasAuthorship W3183539415A5027855773 @default.
- W3183539415 hasAuthorship W3183539415A5034929507 @default.
- W3183539415 hasAuthorship W3183539415A5086340757 @default.
- W3183539415 hasBestOaLocation W31835394151 @default.
- W3183539415 hasConcept C112950240 @default.
- W3183539415 hasConcept C119857082 @default.
- W3183539415 hasConcept C120665830 @default.
- W3183539415 hasConcept C121332964 @default.
- W3183539415 hasConcept C127413603 @default.
- W3183539415 hasConcept C136525101 @default.
- W3183539415 hasConcept C142724271 @default.
- W3183539415 hasConcept C159985019 @default.
- W3183539415 hasConcept C192562407 @default.
- W3183539415 hasConcept C200649887 @default.
- W3183539415 hasConcept C204787440 @default.
- W3183539415 hasConcept C21200559 @default.
- W3183539415 hasConcept C24326235 @default.
- W3183539415 hasConcept C26796778 @default.
- W3183539415 hasConcept C2775868795 @default.
- W3183539415 hasConcept C2777581544 @default.
- W3183539415 hasConcept C41008148 @default.
- W3183539415 hasConcept C48921125 @default.
- W3183539415 hasConcept C520434653 @default.
- W3183539415 hasConcept C54237361 @default.
- W3183539415 hasConcept C71924100 @default.
- W3183539415 hasConcept C87976508 @default.
- W3183539415 hasConceptScore W3183539415C112950240 @default.
- W3183539415 hasConceptScore W3183539415C119857082 @default.
- W3183539415 hasConceptScore W3183539415C120665830 @default.
- W3183539415 hasConceptScore W3183539415C121332964 @default.
- W3183539415 hasConceptScore W3183539415C127413603 @default.