Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183544601> ?p ?o ?g. }
- W3183544601 endingPage "4856" @default.
- W3183544601 startingPage "4843" @default.
- W3183544601 abstract "Abstract Purpose Flat‐panel detector (FPD) based dual‐energy cone‐beam computed tomography (DE‐CBCT) is a promising imaging technique for dedicated clinical applications. In this paper, we proposed a fully analytical method for fast and effective single‐scan DE‐CBCT image reconstruction and decomposition. Methods A rotatable Mo filter was inserted between an x‐ray source and imaged object to alternately produce low and high‐energy x‐ray spectra. First, filtered‐backprojection (FBP) method was applied on down‐sampled projections to reconstruct low and high‐energy images. Then, the two images were converted into a vectorized form represented with an amplitude and an argument image. Using amplitude image as a guide, a joint bilateral filter was applied to denoise the argument image. Then, high‐quality dual‐energy images were recovered from the amplitude image and the denoised argument image. Finally, the recovered dual‐energy images were further used for low‐noise material decomposition and electron density synthesis. Imaging was conducted on a Catphan ® 600 phantom and an anthropomorphic head phantom. The proposed method was evaluated via comparison with the traditional two‐scan method and a commonly used filtering method (HYPR‐LR). Results On the Catphan ® 600 phantom, the proposed method successfully reduced streaking artifacts and preserved spatial resolution and noise‐power‐spectrum (NPS) pattern. In the electron density image, the proposed method increased contrast‐to‐noise ratio (CNR) by more than 2.5 times and achieved <1.2% error for electron density values. On the anthropomorphic head phantom, the proposed method greatly improved the soft‐tissue contrast and the fine detail differentiation ability. In the selected ROIs on different human tissues, the differences between the CT number obtained by the proposed method and that by the two‐scan method were less than 4 HU. In the material images, the proposed method suppressed noise by over 75.5% compared with two‐scan results, and by over 40.4% compared with HYPR‐LR results. Implementation of the whole algorithm took 44.5 s for volumetric imaging, including projection preprocessing, FBP reconstruction, joint bilateral filtering, and material decomposition. Conclusions Using down‐sampled projections in single‐scan DE‐CBCT, the proposed method could effectively and efficiently produce high‐quality DE‐CBCT images and low‐noise material decomposition images. This method demonstrated superior performance on spatial resolution enhancement, NPS preservation, noise reduction, and electron density accuracy, indicating better prospect in material differentiation and dose calculation." @default.
- W3183544601 created "2021-08-02" @default.
- W3183544601 creator A5007407966 @default.
- W3183544601 creator A5012464866 @default.
- W3183544601 creator A5050076185 @default.
- W3183544601 creator A5060373267 @default.
- W3183544601 creator A5064426133 @default.
- W3183544601 creator A5090211799 @default.
- W3183544601 date "2021-08-11" @default.
- W3183544601 modified "2023-10-14" @default.
- W3183544601 title "Fast and effective single‐scan dual‐energy cone‐beam CT reconstruction and decomposition denoising based on dual‐energy vectorization" @default.
- W3183544601 cites W1500741745 @default.
- W3183544601 cites W177816207 @default.
- W3183544601 cites W1972037630 @default.
- W3183544601 cites W1974963207 @default.
- W3183544601 cites W1975658718 @default.
- W3183544601 cites W1994212156 @default.
- W3183544601 cites W2002752499 @default.
- W3183544601 cites W2007966743 @default.
- W3183544601 cites W2010173017 @default.
- W3183544601 cites W2010963605 @default.
- W3183544601 cites W2018876455 @default.
- W3183544601 cites W2028137953 @default.
- W3183544601 cites W2034707285 @default.
- W3183544601 cites W2036419804 @default.
- W3183544601 cites W2040072697 @default.
- W3183544601 cites W2040337964 @default.
- W3183544601 cites W2042195023 @default.
- W3183544601 cites W2052486537 @default.
- W3183544601 cites W2055138517 @default.
- W3183544601 cites W2057857591 @default.
- W3183544601 cites W2059360236 @default.
- W3183544601 cites W2081567006 @default.
- W3183544601 cites W2084789529 @default.
- W3183544601 cites W2086734311 @default.
- W3183544601 cites W2096309518 @default.
- W3183544601 cites W2139655972 @default.
- W3183544601 cites W2158959176 @default.
- W3183544601 cites W2161631943 @default.
- W3183544601 cites W2166022329 @default.
- W3183544601 cites W2195164371 @default.
- W3183544601 cites W2223518290 @default.
- W3183544601 cites W2280162087 @default.
- W3183544601 cites W2347030747 @default.
- W3183544601 cites W2514903487 @default.
- W3183544601 cites W2517964302 @default.
- W3183544601 cites W2524887677 @default.
- W3183544601 cites W2569379566 @default.
- W3183544601 cites W26190382 @default.
- W3183544601 cites W2762629333 @default.
- W3183544601 cites W2765625472 @default.
- W3183544601 cites W2793176558 @default.
- W3183544601 cites W2945510281 @default.
- W3183544601 cites W2991279275 @default.
- W3183544601 cites W3020003818 @default.
- W3183544601 cites W3106030233 @default.
- W3183544601 cites W3112351419 @default.
- W3183544601 cites W641931047 @default.
- W3183544601 doi "https://doi.org/10.1002/mp.15117" @default.
- W3183544601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34289129" @default.
- W3183544601 hasPublicationYear "2021" @default.
- W3183544601 type Work @default.
- W3183544601 sameAs 3183544601 @default.
- W3183544601 citedByCount "7" @default.
- W3183544601 countsByYear W31835446012023 @default.
- W3183544601 crossrefType "journal-article" @default.
- W3183544601 hasAuthorship W3183544601A5007407966 @default.
- W3183544601 hasAuthorship W3183544601A5012464866 @default.
- W3183544601 hasAuthorship W3183544601A5050076185 @default.
- W3183544601 hasAuthorship W3183544601A5060373267 @default.
- W3183544601 hasAuthorship W3183544601A5064426133 @default.
- W3183544601 hasAuthorship W3183544601A5090211799 @default.
- W3183544601 hasConcept C104293457 @default.
- W3183544601 hasConcept C106131492 @default.
- W3183544601 hasConcept C115961682 @default.
- W3183544601 hasConcept C120665830 @default.
- W3183544601 hasConcept C121332964 @default.
- W3183544601 hasConcept C126838900 @default.
- W3183544601 hasConcept C141379421 @default.
- W3183544601 hasConcept C154945302 @default.
- W3183544601 hasConcept C163294075 @default.
- W3183544601 hasConcept C186370098 @default.
- W3183544601 hasConcept C205372480 @default.
- W3183544601 hasConcept C2779813781 @default.
- W3183544601 hasConcept C31972630 @default.
- W3183544601 hasConcept C41008148 @default.
- W3183544601 hasConcept C544519230 @default.
- W3183544601 hasConcept C55020928 @default.
- W3183544601 hasConcept C62520636 @default.
- W3183544601 hasConcept C71924100 @default.
- W3183544601 hasConcept C99498987 @default.
- W3183544601 hasConceptScore W3183544601C104293457 @default.
- W3183544601 hasConceptScore W3183544601C106131492 @default.
- W3183544601 hasConceptScore W3183544601C115961682 @default.
- W3183544601 hasConceptScore W3183544601C120665830 @default.
- W3183544601 hasConceptScore W3183544601C121332964 @default.
- W3183544601 hasConceptScore W3183544601C126838900 @default.
- W3183544601 hasConceptScore W3183544601C141379421 @default.