Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183557588> ?p ?o ?g. }
- W3183557588 endingPage "165" @default.
- W3183557588 startingPage "153" @default.
- W3183557588 abstract "Future exploration and human missions on large planetary bodies (e.g., moon, Mars) will require advanced guidance navigation and control algorithms for the powered descent phase, which must be capable of unprecedented levels of autonomy. The advent of machine learning, and specifically reinforcement learning, has enabled new possibilities for closed-loop autonomous guidance and navigation. In this paper, image-based reinforcement meta-learning is applied to solve the lunar pinpoint powered descent and landing task with uncertain dynamic parameters and actuator failure. The agent, a deep neural network, takes real-time images and ranging observations acquired during the descent and maps them directly to thrust command (i.e., sensor-to-action policy). Training and validation of the algorithm and Monte Carlo simulations shows that the resulting closed-loop guidance policy reaches errors in the order of meters in different scenarios, even when the environment is partially observed, and the state of the spacecraft is not fully known." @default.
- W3183557588 created "2021-08-02" @default.
- W3183557588 creator A5003742618 @default.
- W3183557588 creator A5008555781 @default.
- W3183557588 creator A5025863409 @default.
- W3183557588 creator A5030446067 @default.
- W3183557588 creator A5068335450 @default.
- W3183557588 creator A5082593441 @default.
- W3183557588 date "2022-01-01" @default.
- W3183557588 modified "2023-10-18" @default.
- W3183557588 title "Image-Based Deep Reinforcement Meta-Learning for Autonomous Lunar Landing" @default.
- W3183557588 cites W1965555277 @default.
- W3183557588 cites W1985700489 @default.
- W3183557588 cites W2022419729 @default.
- W3183557588 cites W2025943913 @default.
- W3183557588 cites W2038818107 @default.
- W3183557588 cites W2058021091 @default.
- W3183557588 cites W2061019753 @default.
- W3183557588 cites W2065213714 @default.
- W3183557588 cites W2093903024 @default.
- W3183557588 cites W2119717200 @default.
- W3183557588 cites W2130527887 @default.
- W3183557588 cites W2134911415 @default.
- W3183557588 cites W2159583056 @default.
- W3183557588 cites W2221321873 @default.
- W3183557588 cites W2275510930 @default.
- W3183557588 cites W2546070262 @default.
- W3183557588 cites W2594619940 @default.
- W3183557588 cites W2744091781 @default.
- W3183557588 cites W2773914592 @default.
- W3183557588 cites W2787725528 @default.
- W3183557588 cites W2937851279 @default.
- W3183557588 cites W2952608859 @default.
- W3183557588 cites W2959289771 @default.
- W3183557588 cites W2970582034 @default.
- W3183557588 cites W2999854857 @default.
- W3183557588 cites W3009483609 @default.
- W3183557588 cites W3011227764 @default.
- W3183557588 cites W3014752176 @default.
- W3183557588 cites W3097586409 @default.
- W3183557588 cites W3102270033 @default.
- W3183557588 cites W3116092925 @default.
- W3183557588 cites W3176100771 @default.
- W3183557588 cites W4235668965 @default.
- W3183557588 cites W936737818 @default.
- W3183557588 doi "https://doi.org/10.2514/1.a35072" @default.
- W3183557588 hasPublicationYear "2022" @default.
- W3183557588 type Work @default.
- W3183557588 sameAs 3183557588 @default.
- W3183557588 citedByCount "24" @default.
- W3183557588 countsByYear W31835575882022 @default.
- W3183557588 countsByYear W31835575882023 @default.
- W3183557588 crossrefType "journal-article" @default.
- W3183557588 hasAuthorship W3183557588A5003742618 @default.
- W3183557588 hasAuthorship W3183557588A5008555781 @default.
- W3183557588 hasAuthorship W3183557588A5025863409 @default.
- W3183557588 hasAuthorship W3183557588A5030446067 @default.
- W3183557588 hasAuthorship W3183557588A5068335450 @default.
- W3183557588 hasAuthorship W3183557588A5082593441 @default.
- W3183557588 hasBestOaLocation W31835575882 @default.
- W3183557588 hasConcept C121332964 @default.
- W3183557588 hasConcept C127413603 @default.
- W3183557588 hasConcept C146978453 @default.
- W3183557588 hasConcept C153258448 @default.
- W3183557588 hasConcept C154945302 @default.
- W3183557588 hasConcept C172707124 @default.
- W3183557588 hasConcept C201995342 @default.
- W3183557588 hasConcept C2776637919 @default.
- W3183557588 hasConcept C2780451532 @default.
- W3183557588 hasConcept C29829512 @default.
- W3183557588 hasConcept C41008148 @default.
- W3183557588 hasConcept C44154836 @default.
- W3183557588 hasConcept C50644808 @default.
- W3183557588 hasConcept C68702407 @default.
- W3183557588 hasConcept C78949437 @default.
- W3183557588 hasConcept C79420006 @default.
- W3183557588 hasConcept C83260615 @default.
- W3183557588 hasConcept C87355193 @default.
- W3183557588 hasConcept C97541855 @default.
- W3183557588 hasConceptScore W3183557588C121332964 @default.
- W3183557588 hasConceptScore W3183557588C127413603 @default.
- W3183557588 hasConceptScore W3183557588C146978453 @default.
- W3183557588 hasConceptScore W3183557588C153258448 @default.
- W3183557588 hasConceptScore W3183557588C154945302 @default.
- W3183557588 hasConceptScore W3183557588C172707124 @default.
- W3183557588 hasConceptScore W3183557588C201995342 @default.
- W3183557588 hasConceptScore W3183557588C2776637919 @default.
- W3183557588 hasConceptScore W3183557588C2780451532 @default.
- W3183557588 hasConceptScore W3183557588C29829512 @default.
- W3183557588 hasConceptScore W3183557588C41008148 @default.
- W3183557588 hasConceptScore W3183557588C44154836 @default.
- W3183557588 hasConceptScore W3183557588C50644808 @default.
- W3183557588 hasConceptScore W3183557588C68702407 @default.
- W3183557588 hasConceptScore W3183557588C78949437 @default.
- W3183557588 hasConceptScore W3183557588C79420006 @default.
- W3183557588 hasConceptScore W3183557588C83260615 @default.
- W3183557588 hasConceptScore W3183557588C87355193 @default.
- W3183557588 hasConceptScore W3183557588C97541855 @default.