Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183579868> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3183579868 endingPage "103255" @default.
- W3183579868 startingPage "103255" @default.
- W3183579868 abstract "Vision-and-Language Navigation (VLN) is a challenging task in which an agent needs to follow a language-specified path to reach a target destination. The goal gets even harder as the actions available to the agent get simpler and move towards low-level, atomic interactions with the environment. This setting takes the name of low-level VLN. In this paper, we strive for the creation of an agent able to tackle three key issues: multi-modality, long-term dependencies, and adaptability towards different locomotive settings. To that end, we devise “Perceive, Transform, and Act” (PTA): a fully-attentive VLN architecture that leaves the recurrent approach behind and the first Transformer-like architecture incorporating three different modalities — natural language, images, and low-level actions for the agent control. In particular, we adopt an early fusion strategy to merge lingual and visual information efficiently in our encoder. We then propose to refine the decoding phase with a late fusion extension between the agent’s history of actions and the perceptual modalities. We experimentally validate our model on two datasets: PTA achieves promising results in low-level VLN on R2R and achieves good performance in the recently proposed R4R benchmark." @default.
- W3183579868 created "2021-08-02" @default.
- W3183579868 creator A5000357955 @default.
- W3183579868 creator A5030948871 @default.
- W3183579868 creator A5045245623 @default.
- W3183579868 creator A5048928616 @default.
- W3183579868 creator A5066519737 @default.
- W3183579868 date "2021-09-01" @default.
- W3183579868 modified "2023-10-10" @default.
- W3183579868 title "Multimodal attention networks for low-level vision-and-language navigation" @default.
- W3183579868 cites W1895577753 @default.
- W3183579868 cites W1933349210 @default.
- W3183579868 cites W2107878631 @default.
- W3183579868 cites W2108598243 @default.
- W3183579868 cites W2119717200 @default.
- W3183579868 cites W2194775991 @default.
- W3183579868 cites W2250539671 @default.
- W3183579868 cites W2560730294 @default.
- W3183579868 cites W2593841437 @default.
- W3183579868 cites W2603266952 @default.
- W3183579868 cites W2745461083 @default.
- W3183579868 cites W2926977875 @default.
- W3183579868 cites W2950697717 @default.
- W3183579868 cites W2951973805 @default.
- W3183579868 cites W2953127211 @default.
- W3183579868 cites W2962744691 @default.
- W3183579868 cites W2963693848 @default.
- W3183579868 cites W2963800628 @default.
- W3183579868 cites W2963846044 @default.
- W3183579868 cites W2964339842 @default.
- W3183579868 cites W2964935470 @default.
- W3183579868 cites W2974759213 @default.
- W3183579868 cites W2979727876 @default.
- W3183579868 cites W2981900248 @default.
- W3183579868 cites W2986357018 @default.
- W3183579868 cites W2987914945 @default.
- W3183579868 cites W3009928773 @default.
- W3183579868 cites W3034500398 @default.
- W3183579868 cites W3034578524 @default.
- W3183579868 cites W3035232877 @default.
- W3183579868 cites W3107069568 @default.
- W3183579868 cites W4249013746 @default.
- W3183579868 doi "https://doi.org/10.1016/j.cviu.2021.103255" @default.
- W3183579868 hasPublicationYear "2021" @default.
- W3183579868 type Work @default.
- W3183579868 sameAs 3183579868 @default.
- W3183579868 citedByCount "15" @default.
- W3183579868 countsByYear W31835798682021 @default.
- W3183579868 countsByYear W31835798682022 @default.
- W3183579868 countsByYear W31835798682023 @default.
- W3183579868 crossrefType "journal-article" @default.
- W3183579868 hasAuthorship W3183579868A5000357955 @default.
- W3183579868 hasAuthorship W3183579868A5030948871 @default.
- W3183579868 hasAuthorship W3183579868A5045245623 @default.
- W3183579868 hasAuthorship W3183579868A5048928616 @default.
- W3183579868 hasAuthorship W3183579868A5066519737 @default.
- W3183579868 hasBestOaLocation W31835798682 @default.
- W3183579868 hasConcept C107457646 @default.
- W3183579868 hasConcept C154945302 @default.
- W3183579868 hasConcept C31972630 @default.
- W3183579868 hasConcept C41008148 @default.
- W3183579868 hasConceptScore W3183579868C107457646 @default.
- W3183579868 hasConceptScore W3183579868C154945302 @default.
- W3183579868 hasConceptScore W3183579868C31972630 @default.
- W3183579868 hasConceptScore W3183579868C41008148 @default.
- W3183579868 hasLocation W31835798681 @default.
- W3183579868 hasLocation W31835798682 @default.
- W3183579868 hasLocation W31835798683 @default.
- W3183579868 hasOpenAccess W3183579868 @default.
- W3183579868 hasPrimaryLocation W31835798681 @default.
- W3183579868 hasRelatedWork W1891287906 @default.
- W3183579868 hasRelatedWork W1969923398 @default.
- W3183579868 hasRelatedWork W2036807459 @default.
- W3183579868 hasRelatedWork W2058170566 @default.
- W3183579868 hasRelatedWork W2166024367 @default.
- W3183579868 hasRelatedWork W2229312674 @default.
- W3183579868 hasRelatedWork W2755342338 @default.
- W3183579868 hasRelatedWork W2772917594 @default.
- W3183579868 hasRelatedWork W2775347418 @default.
- W3183579868 hasRelatedWork W3116076068 @default.
- W3183579868 hasVolume "210" @default.
- W3183579868 isParatext "false" @default.
- W3183579868 isRetracted "false" @default.
- W3183579868 magId "3183579868" @default.
- W3183579868 workType "article" @default.