Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183602305> ?p ?o ?g. }
- W3183602305 endingPage "34" @default.
- W3183602305 startingPage "22" @default.
- W3183602305 abstract "Most of the dyes are toxic and non-biodegradable in textile industry wastewaters. Therefore, removal of textile dye using agriculture waste becomes crucial for the environment. This can be accomplished by the biosorption process which is the passive uptake of pollutants by agricultural waste. In this study, Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to obtain optimum conditions for Methylene Blue (MB) removal using sugarcane bagasse and peanut hulls as low-cost agricultural waste. The experimental design was carried out to study the effect of temperature, pH, biosorbent amount and dye concentration. The maximum MB dye removal considering the effect of total dissolved solids from aqueous solutions of 74.49% and 67.99% by sugarcane bagasse and peanut hulls, respectively. The models specify that they could predict biosorption with high accuracy having R2-value above 0.9. Statistical studies for RSM, ANFIS and ANN models were compared. Further, the models were optimized for maximum dye removal was at 1.21 g of biosorbent, pH 5.24, 31.24 mg/L MB concentration, 22.29°C of dye solution using sugarcane bagasse and at 1.37 g of biosorbent, pH 5.77, 36.7 mg/L MB concentration, 26.8°C of dye solution using peanut hulls. Additionally, Fourier Transform Infra-Red (FTIR) spectral analysis was also carried out to confirm the biosorption." @default.
- W3183602305 created "2021-08-02" @default.
- W3183602305 creator A5021013520 @default.
- W3183602305 creator A5029529812 @default.
- W3183602305 creator A5029583948 @default.
- W3183602305 creator A5079261377 @default.
- W3183602305 creator A5087818561 @default.
- W3183602305 date "2021-08-14" @default.
- W3183602305 modified "2023-10-12" @default.
- W3183602305 title "Use of artificial intelligence for optimizing biosorption of textile wastewater using agricultural waste" @default.
- W3183602305 cites W1169588894 @default.
- W3183602305 cites W1964533553 @default.
- W3183602305 cites W1974220999 @default.
- W3183602305 cites W1983130833 @default.
- W3183602305 cites W1990790314 @default.
- W3183602305 cites W2004401116 @default.
- W3183602305 cites W2006687493 @default.
- W3183602305 cites W2014235250 @default.
- W3183602305 cites W2019207321 @default.
- W3183602305 cites W2023380162 @default.
- W3183602305 cites W2032936198 @default.
- W3183602305 cites W2047425722 @default.
- W3183602305 cites W2047638716 @default.
- W3183602305 cites W2048709610 @default.
- W3183602305 cites W2049185728 @default.
- W3183602305 cites W2060736125 @default.
- W3183602305 cites W2067173771 @default.
- W3183602305 cites W2077163709 @default.
- W3183602305 cites W2078197060 @default.
- W3183602305 cites W2078803435 @default.
- W3183602305 cites W2085043615 @default.
- W3183602305 cites W2131676805 @default.
- W3183602305 cites W2182855566 @default.
- W3183602305 cites W2267143242 @default.
- W3183602305 cites W2474554670 @default.
- W3183602305 cites W2506935491 @default.
- W3183602305 cites W2552643649 @default.
- W3183602305 cites W2581334118 @default.
- W3183602305 cites W2596786404 @default.
- W3183602305 cites W2606143965 @default.
- W3183602305 cites W2757849494 @default.
- W3183602305 cites W2774152336 @default.
- W3183602305 cites W2784765303 @default.
- W3183602305 cites W2799677062 @default.
- W3183602305 cites W2810285258 @default.
- W3183602305 cites W2883112926 @default.
- W3183602305 cites W2887312959 @default.
- W3183602305 cites W2888074035 @default.
- W3183602305 cites W2898628000 @default.
- W3183602305 cites W2903909948 @default.
- W3183602305 cites W2914030882 @default.
- W3183602305 cites W2934761796 @default.
- W3183602305 cites W2946038142 @default.
- W3183602305 cites W2948595259 @default.
- W3183602305 cites W2962854057 @default.
- W3183602305 cites W2964808068 @default.
- W3183602305 cites W2980333086 @default.
- W3183602305 cites W2990571312 @default.
- W3183602305 cites W2995280177 @default.
- W3183602305 cites W3008656592 @default.
- W3183602305 cites W3014850885 @default.
- W3183602305 cites W3015302133 @default.
- W3183602305 cites W3021182860 @default.
- W3183602305 cites W3034074743 @default.
- W3183602305 cites W3095180852 @default.
- W3183602305 cites W3096697058 @default.
- W3183602305 cites W3112137699 @default.
- W3183602305 cites W3115508352 @default.
- W3183602305 cites W3125586685 @default.
- W3183602305 cites W3159187402 @default.
- W3183602305 cites W3170306044 @default.
- W3183602305 cites W4236613240 @default.
- W3183602305 cites W4237591910 @default.
- W3183602305 doi "https://doi.org/10.1080/09593330.2021.1961874" @default.
- W3183602305 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34319862" @default.
- W3183602305 hasPublicationYear "2021" @default.
- W3183602305 type Work @default.
- W3183602305 sameAs 3183602305 @default.
- W3183602305 citedByCount "6" @default.
- W3183602305 countsByYear W31836023052022 @default.
- W3183602305 countsByYear W31836023052023 @default.
- W3183602305 crossrefType "journal-article" @default.
- W3183602305 hasAuthorship W3183602305A5021013520 @default.
- W3183602305 hasAuthorship W3183602305A5029529812 @default.
- W3183602305 hasAuthorship W3183602305A5029583948 @default.
- W3183602305 hasAuthorship W3183602305A5079261377 @default.
- W3183602305 hasAuthorship W3183602305A5087818561 @default.
- W3183602305 hasConcept C127413603 @default.
- W3183602305 hasConcept C134643618 @default.
- W3183602305 hasConcept C150077022 @default.
- W3183602305 hasConcept C150394285 @default.
- W3183602305 hasConcept C159985019 @default.
- W3183602305 hasConcept C170295934 @default.
- W3183602305 hasConcept C178790620 @default.
- W3183602305 hasConcept C185592680 @default.
- W3183602305 hasConcept C192562407 @default.
- W3183602305 hasConcept C2776812703 @default.
- W3183602305 hasConcept C2780435113 @default.