Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183637089> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3183637089 endingPage "103827" @default.
- W3183637089 startingPage "103827" @default.
- W3183637089 abstract "It is challenging to develop accurate models for heavy construction equipment residual value prediction using conventional approaches. This article proposes three Machine Learning-based methods of Modified Decision Tree (MDT), LightGBM, and XGBoost regressions to predict construction equipment's residual value. Supervised machine learning algorithms were used to comprehensively investigate the datasets throughout training, testing, modeling, and cross-validation processes. Four performance metrics (i.e., MAE, MSE, MAPE, and R 2 ) were used to measure and compare the algorithms' accuracy. Based on the coefficient of determination results, the MDT algorithm has the highest prediction accuracy of 0.9284, versus the LightGBM with an accuracy of 0.8765, followed by XGBoost, obtaining an accuracy of 0.8493. The MDT can be used as a managerial decision support tool for equipment sellers, buyers, and owners to perform equipment life cycle analysis and take equipment selling, purchasing, overhauling, repairing, disposing, and replacing decisions. Thus, this study motivates machine learning's potential to help advancing automation as a coherent field of research within the construction industry. • Predictive residual value modeling for heavy construction equipment. • Machine learning-based forecasting Modified Decision Tree (MDT), LightGBM, and XGBoost Regression. • (MAE, MSE, MAPE, and R 2 ) prediction accuracy matrices for accuracy comparisons." @default.
- W3183637089 created "2021-08-02" @default.
- W3183637089 creator A5004618535 @default.
- W3183637089 creator A5006580936 @default.
- W3183637089 creator A5037758422 @default.
- W3183637089 creator A5046651476 @default.
- W3183637089 date "2021-09-01" @default.
- W3183637089 modified "2023-10-12" @default.
- W3183637089 title "Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression" @default.
- W3183637089 cites W1972258355 @default.
- W3183637089 cites W1979855741 @default.
- W3183637089 cites W1987528910 @default.
- W3183637089 cites W1987985866 @default.
- W3183637089 cites W2046577856 @default.
- W3183637089 cites W2053441552 @default.
- W3183637089 cites W2068795325 @default.
- W3183637089 cites W2069999842 @default.
- W3183637089 cites W2092845636 @default.
- W3183637089 cites W2094276670 @default.
- W3183637089 cites W2098255818 @default.
- W3183637089 cites W2140092692 @default.
- W3183637089 cites W2157762210 @default.
- W3183637089 cites W2993028486 @default.
- W3183637089 cites W2996991292 @default.
- W3183637089 cites W2997096564 @default.
- W3183637089 cites W3011965842 @default.
- W3183637089 cites W3019645317 @default.
- W3183637089 cites W3132291851 @default.
- W3183637089 doi "https://doi.org/10.1016/j.autcon.2021.103827" @default.
- W3183637089 hasPublicationYear "2021" @default.
- W3183637089 type Work @default.
- W3183637089 sameAs 3183637089 @default.
- W3183637089 citedByCount "92" @default.
- W3183637089 countsByYear W31836370892021 @default.
- W3183637089 countsByYear W31836370892022 @default.
- W3183637089 countsByYear W31836370892023 @default.
- W3183637089 crossrefType "journal-article" @default.
- W3183637089 hasAuthorship W3183637089A5004618535 @default.
- W3183637089 hasAuthorship W3183637089A5006580936 @default.
- W3183637089 hasAuthorship W3183637089A5037758422 @default.
- W3183637089 hasAuthorship W3183637089A5046651476 @default.
- W3183637089 hasConcept C11413529 @default.
- W3183637089 hasConcept C115901376 @default.
- W3183637089 hasConcept C119857082 @default.
- W3183637089 hasConcept C12267149 @default.
- W3183637089 hasConcept C124101348 @default.
- W3183637089 hasConcept C127413603 @default.
- W3183637089 hasConcept C154945302 @default.
- W3183637089 hasConcept C155512373 @default.
- W3183637089 hasConcept C41008148 @default.
- W3183637089 hasConcept C78519656 @default.
- W3183637089 hasConcept C84525736 @default.
- W3183637089 hasConceptScore W3183637089C11413529 @default.
- W3183637089 hasConceptScore W3183637089C115901376 @default.
- W3183637089 hasConceptScore W3183637089C119857082 @default.
- W3183637089 hasConceptScore W3183637089C12267149 @default.
- W3183637089 hasConceptScore W3183637089C124101348 @default.
- W3183637089 hasConceptScore W3183637089C127413603 @default.
- W3183637089 hasConceptScore W3183637089C154945302 @default.
- W3183637089 hasConceptScore W3183637089C155512373 @default.
- W3183637089 hasConceptScore W3183637089C41008148 @default.
- W3183637089 hasConceptScore W3183637089C78519656 @default.
- W3183637089 hasConceptScore W3183637089C84525736 @default.
- W3183637089 hasLocation W31836370891 @default.
- W3183637089 hasOpenAccess W3183637089 @default.
- W3183637089 hasPrimaryLocation W31836370891 @default.
- W3183637089 hasRelatedWork W2101819884 @default.
- W3183637089 hasRelatedWork W2937631562 @default.
- W3183637089 hasRelatedWork W3127425528 @default.
- W3183637089 hasRelatedWork W3136979370 @default.
- W3183637089 hasRelatedWork W3186233728 @default.
- W3183637089 hasRelatedWork W3194539120 @default.
- W3183637089 hasRelatedWork W3204641204 @default.
- W3183637089 hasRelatedWork W3210918776 @default.
- W3183637089 hasRelatedWork W4205958290 @default.
- W3183637089 hasRelatedWork W4224946860 @default.
- W3183637089 hasVolume "129" @default.
- W3183637089 isParatext "false" @default.
- W3183637089 isRetracted "false" @default.
- W3183637089 magId "3183637089" @default.
- W3183637089 workType "article" @default.