Matches in SemOpenAlex for { <https://semopenalex.org/work/W318364127> ?p ?o ?g. }
- W318364127 endingPage "41" @default.
- W318364127 startingPage "28" @default.
- W318364127 abstract "Geo-Object-Based Image Analysis (GEOBIA) is becoming an increasingly important technology for information extraction from remote sensing images. Multi-scale image segmentation is a key procedure that partitions an image into homogeneous parcels (image objects) in GEOBIA. Hierarchical image objects also provide a better representation result than a single-scale representation. However, scale selection in multi-scale image segmentation is always difficult for high-performance GEOBIA. This paper first generalizes the commonly used segmentation scale parameters into three aspects: spatial bandwidth (spatial distance between classes), attribute bandwidth (difference between classes) and merging threshold. Next, taking mean-shift multi-scale segmentation as an example, this paper proposes a spatial and spectral statistics-based scale parameter selection method for object-based information extraction from high spatial resolution remote sensing images. The main idea of this proposed method is to use the ALV graph to replace the semivariogram to pre-estimate the optimal spatial bandwidth. Next, the selection of the optimal attribute bandwidth and the merging threshold are based on the ALV histogram and simple geometric computation, respectively. This study uses Ikonos, Quickbird and aerial panchromatic images as the experimental data to verify the validity of the proposed scale parameter selection method. Experiments based on quantitative multi-scale segmentation evaluation testify to the validity of this method. This pre-estimation-based scale parameter selection method is practically helpful and efficient in GEOBIA. The idea of this method can be further extended to other segmentation algorithms and other sensor data." @default.
- W318364127 created "2016-06-24" @default.
- W318364127 creator A5007144110 @default.
- W318364127 creator A5024569123 @default.
- W318364127 creator A5025493288 @default.
- W318364127 creator A5053204257 @default.
- W318364127 date "2015-08-01" @default.
- W318364127 modified "2023-10-11" @default.
- W318364127 title "Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example" @default.
- W318364127 cites W1964262728 @default.
- W318364127 cites W1967413121 @default.
- W318364127 cites W1967769689 @default.
- W318364127 cites W1981049948 @default.
- W318364127 cites W1983100435 @default.
- W318364127 cites W1984792953 @default.
- W318364127 cites W1986738039 @default.
- W318364127 cites W1987069725 @default.
- W318364127 cites W1995280601 @default.
- W318364127 cites W2003128786 @default.
- W318364127 cites W2004721758 @default.
- W318364127 cites W2004790262 @default.
- W318364127 cites W2013146269 @default.
- W318364127 cites W2022686119 @default.
- W318364127 cites W2027714080 @default.
- W318364127 cites W2028546171 @default.
- W318364127 cites W2050797795 @default.
- W318364127 cites W2061240006 @default.
- W318364127 cites W2067191022 @default.
- W318364127 cites W2077322853 @default.
- W318364127 cites W2082081125 @default.
- W318364127 cites W2086717801 @default.
- W318364127 cites W2090548014 @default.
- W318364127 cites W2094976293 @default.
- W318364127 cites W2101824565 @default.
- W318364127 cites W2102013325 @default.
- W318364127 cites W2103079830 @default.
- W318364127 cites W2105058098 @default.
- W318364127 cites W2109044582 @default.
- W318364127 cites W2110993249 @default.
- W318364127 cites W2119879130 @default.
- W318364127 cites W2124260943 @default.
- W318364127 cites W2132001627 @default.
- W318364127 cites W2141153821 @default.
- W318364127 cites W2141924908 @default.
- W318364127 cites W2145448441 @default.
- W318364127 cites W2149107824 @default.
- W318364127 cites W2154351534 @default.
- W318364127 cites W2157082243 @default.
- W318364127 cites W2164500538 @default.
- W318364127 cites W2170487248 @default.
- W318364127 cites W2171731854 @default.
- W318364127 cites W2172168794 @default.
- W318364127 cites W2175159455 @default.
- W318364127 doi "https://doi.org/10.1016/j.isprsjprs.2015.04.010" @default.
- W318364127 hasPublicationYear "2015" @default.
- W318364127 type Work @default.
- W318364127 sameAs 318364127 @default.
- W318364127 citedByCount "116" @default.
- W318364127 countsByYear W3183641272015 @default.
- W318364127 countsByYear W3183641272016 @default.
- W318364127 countsByYear W3183641272017 @default.
- W318364127 countsByYear W3183641272018 @default.
- W318364127 countsByYear W3183641272019 @default.
- W318364127 countsByYear W3183641272020 @default.
- W318364127 countsByYear W3183641272021 @default.
- W318364127 countsByYear W3183641272022 @default.
- W318364127 countsByYear W3183641272023 @default.
- W318364127 crossrefType "journal-article" @default.
- W318364127 hasAuthorship W318364127A5007144110 @default.
- W318364127 hasAuthorship W318364127A5024569123 @default.
- W318364127 hasAuthorship W318364127A5025493288 @default.
- W318364127 hasAuthorship W318364127A5053204257 @default.
- W318364127 hasConcept C105795698 @default.
- W318364127 hasConcept C107445234 @default.
- W318364127 hasConcept C115961682 @default.
- W318364127 hasConcept C124101348 @default.
- W318364127 hasConcept C124504099 @default.
- W318364127 hasConcept C153180895 @default.
- W318364127 hasConcept C154945302 @default.
- W318364127 hasConcept C159620131 @default.
- W318364127 hasConcept C205372480 @default.
- W318364127 hasConcept C205649164 @default.
- W318364127 hasConcept C25694479 @default.
- W318364127 hasConcept C2778755073 @default.
- W318364127 hasConcept C33923547 @default.
- W318364127 hasConcept C41008148 @default.
- W318364127 hasConcept C53533937 @default.
- W318364127 hasConcept C58640448 @default.
- W318364127 hasConcept C65885262 @default.
- W318364127 hasConcept C89600930 @default.
- W318364127 hasConceptScore W318364127C105795698 @default.
- W318364127 hasConceptScore W318364127C107445234 @default.
- W318364127 hasConceptScore W318364127C115961682 @default.
- W318364127 hasConceptScore W318364127C124101348 @default.
- W318364127 hasConceptScore W318364127C124504099 @default.
- W318364127 hasConceptScore W318364127C153180895 @default.
- W318364127 hasConceptScore W318364127C154945302 @default.
- W318364127 hasConceptScore W318364127C159620131 @default.