Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183667648> ?p ?o ?g. }
- W3183667648 endingPage "2830" @default.
- W3183667648 startingPage "2830" @default.
- W3183667648 abstract "There is a growing need to provide support and applicable tools to farmers and the agro-industry in order to move from their traditional water status monitoring and high-water-demand cropping and irrigation practices to modern, more precise, reduced-demand systems and technologies. In precision viticulture, very few approaches with ground robots have served as moving platforms for carrying non-invasive sensors to deliver field maps that help growers in decision making. The goal of this work is to demonstrate the capability of the VineScout (developed in the context of a H2020 EU project), a ground robot designed to assess and map vineyard water status using thermal infrared radiometry in commercial vineyards. The trials were carried out in Douro Superior (Portugal) under different irrigation treatments during seasons 2019 and 2020. Grapevines of Vitis vinifera L. Touriga Nacional were monitored at different timings of the day using leaf water potential (Ψl) as reference indicators of plant water status. Grapevines’ canopy temperature (Tc) values, recorded with an infrared radiometer, as well as data acquired with an environmental sensor (Tair, RH, and AP) and NDVI measurements collected with a multispectral sensor were automatically saved in the computer of the autonomous robot to assess and map the spatial variability of a commercial vineyard water status. Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.57 in the morning time and a r2cv of 0.42 in the midday. The root mean square error of cross-validation (RMSEcv) was 0.191 MPa and 0.139 MPa at morning and midday, respectively. Spatial–temporal variation maps were developed at two different times of the day to illustrate the capability to monitor the grapevine water status in order to reduce the consumption of water, implementing appropriate irrigation strategies and increase the efficiency in the real time vineyard management. The promising outcomes gathered with the VineScout using different sensors based on thermography, multispectral imaging and environmental data disclose the need for further studies considering new variables related with the plant water status, and more grapevine cultivars, seasons and locations to improve the accuracy, robustness and reliability of the predictive models, in the context of precision and sustainable viticulture." @default.
- W3183667648 created "2021-08-02" @default.
- W3183667648 creator A5015899789 @default.
- W3183667648 creator A5021640951 @default.
- W3183667648 creator A5022931796 @default.
- W3183667648 creator A5025413434 @default.
- W3183667648 creator A5036063510 @default.
- W3183667648 creator A5040912395 @default.
- W3183667648 creator A5041268628 @default.
- W3183667648 creator A5055655548 @default.
- W3183667648 creator A5076011657 @default.
- W3183667648 date "2021-07-19" @default.
- W3183667648 modified "2023-10-09" @default.
- W3183667648 title "Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot" @default.
- W3183667648 cites W1529582020 @default.
- W3183667648 cites W166728858 @default.
- W3183667648 cites W1816920383 @default.
- W3183667648 cites W1967491806 @default.
- W3183667648 cites W1973265945 @default.
- W3183667648 cites W1974788889 @default.
- W3183667648 cites W1986786848 @default.
- W3183667648 cites W1989898841 @default.
- W3183667648 cites W1998471192 @default.
- W3183667648 cites W2002320280 @default.
- W3183667648 cites W2017243196 @default.
- W3183667648 cites W2019819424 @default.
- W3183667648 cites W2029195622 @default.
- W3183667648 cites W2036242714 @default.
- W3183667648 cites W2062982970 @default.
- W3183667648 cites W2076456249 @default.
- W3183667648 cites W2076515759 @default.
- W3183667648 cites W2092088043 @default.
- W3183667648 cites W2098413237 @default.
- W3183667648 cites W2111483712 @default.
- W3183667648 cites W2112157943 @default.
- W3183667648 cites W2116033926 @default.
- W3183667648 cites W2116731171 @default.
- W3183667648 cites W2123234588 @default.
- W3183667648 cites W2129037866 @default.
- W3183667648 cites W2149328408 @default.
- W3183667648 cites W2150355727 @default.
- W3183667648 cites W2158863190 @default.
- W3183667648 cites W2161177232 @default.
- W3183667648 cites W2169418131 @default.
- W3183667648 cites W2187076425 @default.
- W3183667648 cites W218991869 @default.
- W3183667648 cites W2281572419 @default.
- W3183667648 cites W2397867874 @default.
- W3183667648 cites W2528379650 @default.
- W3183667648 cites W2559123334 @default.
- W3183667648 cites W2560533871 @default.
- W3183667648 cites W2566624600 @default.
- W3183667648 cites W2791209575 @default.
- W3183667648 cites W2811148000 @default.
- W3183667648 cites W2889409554 @default.
- W3183667648 cites W2913685370 @default.
- W3183667648 cites W2973182201 @default.
- W3183667648 cites W3004337988 @default.
- W3183667648 cites W3005536288 @default.
- W3183667648 cites W3036388420 @default.
- W3183667648 cites W3038052291 @default.
- W3183667648 cites W3047112500 @default.
- W3183667648 cites W3048436184 @default.
- W3183667648 cites W3093978116 @default.
- W3183667648 cites W3096366117 @default.
- W3183667648 cites W4239371029 @default.
- W3183667648 doi "https://doi.org/10.3390/rs13142830" @default.
- W3183667648 hasPublicationYear "2021" @default.
- W3183667648 type Work @default.
- W3183667648 sameAs 3183667648 @default.
- W3183667648 citedByCount "20" @default.
- W3183667648 countsByYear W31836676482021 @default.
- W3183667648 countsByYear W31836676482022 @default.
- W3183667648 countsByYear W31836676482023 @default.
- W3183667648 crossrefType "journal-article" @default.
- W3183667648 hasAuthorship W3183667648A5015899789 @default.
- W3183667648 hasAuthorship W3183667648A5021640951 @default.
- W3183667648 hasAuthorship W3183667648A5022931796 @default.
- W3183667648 hasAuthorship W3183667648A5025413434 @default.
- W3183667648 hasAuthorship W3183667648A5036063510 @default.
- W3183667648 hasAuthorship W3183667648A5040912395 @default.
- W3183667648 hasAuthorship W3183667648A5041268628 @default.
- W3183667648 hasAuthorship W3183667648A5055655548 @default.
- W3183667648 hasAuthorship W3183667648A5076011657 @default.
- W3183667648 hasBestOaLocation W31836676481 @default.
- W3183667648 hasConcept C127413603 @default.
- W3183667648 hasConcept C166957645 @default.
- W3183667648 hasConcept C205649164 @default.
- W3183667648 hasConcept C2779343474 @default.
- W3183667648 hasConcept C2780924976 @default.
- W3183667648 hasConcept C39432304 @default.
- W3183667648 hasConcept C62649853 @default.
- W3183667648 hasConcept C6557445 @default.
- W3183667648 hasConcept C86803240 @default.
- W3183667648 hasConcept C88463610 @default.
- W3183667648 hasConcept C88862950 @default.
- W3183667648 hasConceptScore W3183667648C127413603 @default.
- W3183667648 hasConceptScore W3183667648C166957645 @default.