Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183846167> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3183846167 endingPage "5" @default.
- W3183846167 startingPage "1" @default.
- W3183846167 abstract "Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, the feature extraction method based on neural networks needs a huge amount of training samples, but collecting labeled training samples for change detection tasks is difficult. Therefore, this letter proposes a hyperspectral change detection method based on a simplified 3-D convolutional autoencoder (S3DCAECD). First, the framework is based on deep unsupervised autoencoder (AE), which can extract deep spectral–spatial features from bitemporal images without the need for prior information. Second, by adding a 3-D convolution kernel and eliminating the pooling layer, the structure of 3-D convolutional AE is simplified, which can reduce spectral redundancy and improve data processing speed. Finally, a softmax classifier with a 2-D convolutional layer added is used to obtain the detection result, and only a few label samples are needed to train the classifier. Three HSIs’ experimental results indicate that the accuracy of the S3DCAECD is more than 95% on three experimental datasets and it has better detection results than several commonly used methods." @default.
- W3183846167 created "2021-08-02" @default.
- W3183846167 creator A5037500658 @default.
- W3183846167 creator A5038929132 @default.
- W3183846167 creator A5072245508 @default.
- W3183846167 date "2022-01-01" @default.
- W3183846167 modified "2023-10-16" @default.
- W3183846167 title "A Spectral–Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images" @default.
- W3183846167 cites W1599063483 @default.
- W3183846167 cites W1983364832 @default.
- W3183846167 cites W2100495367 @default.
- W3183846167 cites W2118116484 @default.
- W3183846167 cites W2144552105 @default.
- W3183846167 cites W2766049824 @default.
- W3183846167 cites W2792827505 @default.
- W3183846167 cites W2800240447 @default.
- W3183846167 cites W2900587135 @default.
- W3183846167 cites W2953308875 @default.
- W3183846167 cites W2989751901 @default.
- W3183846167 cites W3023351371 @default.
- W3183846167 cites W3027201985 @default.
- W3183846167 cites W3092189393 @default.
- W3183846167 cites W3105553032 @default.
- W3183846167 doi "https://doi.org/10.1109/lgrs.2021.3096526" @default.
- W3183846167 hasPublicationYear "2022" @default.
- W3183846167 type Work @default.
- W3183846167 sameAs 3183846167 @default.
- W3183846167 citedByCount "13" @default.
- W3183846167 countsByYear W31838461672021 @default.
- W3183846167 countsByYear W31838461672022 @default.
- W3183846167 countsByYear W31838461672023 @default.
- W3183846167 crossrefType "journal-article" @default.
- W3183846167 hasAuthorship W3183846167A5037500658 @default.
- W3183846167 hasAuthorship W3183846167A5038929132 @default.
- W3183846167 hasAuthorship W3183846167A5072245508 @default.
- W3183846167 hasConcept C101738243 @default.
- W3183846167 hasConcept C108583219 @default.
- W3183846167 hasConcept C127313418 @default.
- W3183846167 hasConcept C153180895 @default.
- W3183846167 hasConcept C154945302 @default.
- W3183846167 hasConcept C159078339 @default.
- W3183846167 hasConcept C188441871 @default.
- W3183846167 hasConcept C203595873 @default.
- W3183846167 hasConcept C41008148 @default.
- W3183846167 hasConcept C52622490 @default.
- W3183846167 hasConcept C62649853 @default.
- W3183846167 hasConcept C81363708 @default.
- W3183846167 hasConcept C95623464 @default.
- W3183846167 hasConceptScore W3183846167C101738243 @default.
- W3183846167 hasConceptScore W3183846167C108583219 @default.
- W3183846167 hasConceptScore W3183846167C127313418 @default.
- W3183846167 hasConceptScore W3183846167C153180895 @default.
- W3183846167 hasConceptScore W3183846167C154945302 @default.
- W3183846167 hasConceptScore W3183846167C159078339 @default.
- W3183846167 hasConceptScore W3183846167C188441871 @default.
- W3183846167 hasConceptScore W3183846167C203595873 @default.
- W3183846167 hasConceptScore W3183846167C41008148 @default.
- W3183846167 hasConceptScore W3183846167C52622490 @default.
- W3183846167 hasConceptScore W3183846167C62649853 @default.
- W3183846167 hasConceptScore W3183846167C81363708 @default.
- W3183846167 hasConceptScore W3183846167C95623464 @default.
- W3183846167 hasFunder F4320321001 @default.
- W3183846167 hasFunder F4320335787 @default.
- W3183846167 hasLocation W31838461671 @default.
- W3183846167 hasOpenAccess W3183846167 @default.
- W3183846167 hasPrimaryLocation W31838461671 @default.
- W3183846167 hasRelatedWork W1973197867 @default.
- W3183846167 hasRelatedWork W2568271140 @default.
- W3183846167 hasRelatedWork W2594436708 @default.
- W3183846167 hasRelatedWork W2769441402 @default.
- W3183846167 hasRelatedWork W2789476480 @default.
- W3183846167 hasRelatedWork W2947839263 @default.
- W3183846167 hasRelatedWork W2951850672 @default.
- W3183846167 hasRelatedWork W3120400911 @default.
- W3183846167 hasRelatedWork W4281675222 @default.
- W3183846167 hasRelatedWork W4360994128 @default.
- W3183846167 hasVolume "19" @default.
- W3183846167 isParatext "false" @default.
- W3183846167 isRetracted "false" @default.
- W3183846167 magId "3183846167" @default.
- W3183846167 workType "article" @default.