Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183875489> ?p ?o ?g. }
- W3183875489 endingPage "17" @default.
- W3183875489 startingPage "1" @default.
- W3183875489 abstract "We study inference on the common stochastic trends in a non-stationary, $N$-variate time series $y_{t}$, in the possible presence of heavy tails. We propose a novel methodology which does not require any knowledge or estimation of the tail index, or even knowledge as to whether certain moments (such as the variance) exist or not, and develop an estimator of the number of stochastic trends $m$ based on the eigenvalues of the sample second moment matrix of $y_{t}$. We study the rates of such eigenvalues, showing that the first $m$ ones diverge, as the sample size $T$ passes to infinity, at a rate faster by $Oleft(T right)$ than the remaining $N-m$ ones, irrespective of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test statistic which diverges to positive infinity or drifts to zero according to whether the relevant eigenvalue belongs to the set of the first $m$ eigenvalues or not. We then construct a randomised statistic based on this, using it as part of a sequential testing procedure, ensuring consistency of the resulting estimator of $m$. We also discuss an estimator of the common trends based on principal components and show that, up to a an invertible linear transformation, such estimator is consistent in the sense that the estimation error is of smaller order than the trend itself. Finally, we also consider the case in which we relax the standard assumption of textit{i.i.d.} innovations, by allowing for heterogeneity of a very general form in the scale of the innovations. A Monte Carlo study shows that the proposed estimator for $m$ performs particularly well, even in samples of small size. We complete the paper by presenting four illustrative applications covering commodity prices, interest rates data, long run PPP and cryptocurrency markets." @default.
- W3183875489 created "2021-08-02" @default.
- W3183875489 creator A5008137367 @default.
- W3183875489 creator A5013616417 @default.
- W3183875489 creator A5068883981 @default.
- W3183875489 date "2022-11-04" @default.
- W3183875489 modified "2023-10-17" @default.
- W3183875489 title "Inference in Heavy-Tailed Nonstationary Multivariate Time Series" @default.
- W3183875489 cites W1593060747 @default.
- W3183875489 cites W1820437798 @default.
- W3183875489 cites W1896601429 @default.
- W3183875489 cites W1912412005 @default.
- W3183875489 cites W1956189968 @default.
- W3183875489 cites W1989089774 @default.
- W3183875489 cites W1989672512 @default.
- W3183875489 cites W1994110039 @default.
- W3183875489 cites W1998455469 @default.
- W3183875489 cites W2002238002 @default.
- W3183875489 cites W2002901580 @default.
- W3183875489 cites W2003695184 @default.
- W3183875489 cites W2019975447 @default.
- W3183875489 cites W2028227589 @default.
- W3183875489 cites W2034707435 @default.
- W3183875489 cites W2036155897 @default.
- W3183875489 cites W2038386801 @default.
- W3183875489 cites W2057082360 @default.
- W3183875489 cites W2066638290 @default.
- W3183875489 cites W2072472224 @default.
- W3183875489 cites W2087961746 @default.
- W3183875489 cites W2110603299 @default.
- W3183875489 cites W2127111951 @default.
- W3183875489 cites W2134606401 @default.
- W3183875489 cites W2141540735 @default.
- W3183875489 cites W2144987578 @default.
- W3183875489 cites W2158289614 @default.
- W3183875489 cites W2159491186 @default.
- W3183875489 cites W2169413403 @default.
- W3183875489 cites W2170529788 @default.
- W3183875489 cites W2214892024 @default.
- W3183875489 cites W2345334380 @default.
- W3183875489 cites W2411045379 @default.
- W3183875489 cites W2607309118 @default.
- W3183875489 cites W2900300175 @default.
- W3183875489 cites W2909141423 @default.
- W3183875489 cites W2913152774 @default.
- W3183875489 cites W2950126918 @default.
- W3183875489 cites W2954172329 @default.
- W3183875489 cites W2963812463 @default.
- W3183875489 cites W2964287564 @default.
- W3183875489 cites W2971847891 @default.
- W3183875489 cites W2971882124 @default.
- W3183875489 cites W3033746505 @default.
- W3183875489 cites W3072360790 @default.
- W3183875489 cites W3103362336 @default.
- W3183875489 cites W3121933618 @default.
- W3183875489 cites W3122253332 @default.
- W3183875489 cites W3122317270 @default.
- W3183875489 cites W3123085261 @default.
- W3183875489 cites W3124477952 @default.
- W3183875489 cites W3125486831 @default.
- W3183875489 cites W3125556928 @default.
- W3183875489 cites W3137909417 @default.
- W3183875489 cites W3138290602 @default.
- W3183875489 cites W4247178742 @default.
- W3183875489 cites W4306740389 @default.
- W3183875489 doi "https://doi.org/10.1080/01621459.2022.2128807" @default.
- W3183875489 hasPublicationYear "2022" @default.
- W3183875489 type Work @default.
- W3183875489 sameAs 3183875489 @default.
- W3183875489 citedByCount "2" @default.
- W3183875489 countsByYear W31838754892023 @default.
- W3183875489 crossrefType "journal-article" @default.
- W3183875489 hasAuthorship W3183875489A5008137367 @default.
- W3183875489 hasAuthorship W3183875489A5013616417 @default.
- W3183875489 hasAuthorship W3183875489A5068883981 @default.
- W3183875489 hasBestOaLocation W31838754891 @default.
- W3183875489 hasConcept C105795698 @default.
- W3183875489 hasConcept C127313418 @default.
- W3183875489 hasConcept C143724316 @default.
- W3183875489 hasConcept C149782125 @default.
- W3183875489 hasConcept C151730666 @default.
- W3183875489 hasConcept C154945302 @default.
- W3183875489 hasConcept C161584116 @default.
- W3183875489 hasConcept C2776214188 @default.
- W3183875489 hasConcept C33923547 @default.
- W3183875489 hasConcept C41008148 @default.
- W3183875489 hasConceptScore W3183875489C105795698 @default.
- W3183875489 hasConceptScore W3183875489C127313418 @default.
- W3183875489 hasConceptScore W3183875489C143724316 @default.
- W3183875489 hasConceptScore W3183875489C149782125 @default.
- W3183875489 hasConceptScore W3183875489C151730666 @default.
- W3183875489 hasConceptScore W3183875489C154945302 @default.
- W3183875489 hasConceptScore W3183875489C161584116 @default.
- W3183875489 hasConceptScore W3183875489C2776214188 @default.
- W3183875489 hasConceptScore W3183875489C33923547 @default.
- W3183875489 hasConceptScore W3183875489C41008148 @default.
- W3183875489 hasFunder F4320321873 @default.
- W3183875489 hasLocation W31838754891 @default.