Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183906975> ?p ?o ?g. }
- W3183906975 endingPage "17145" @default.
- W3183906975 startingPage "17131" @default.
- W3183906975 abstract "Abstract This study builds a predictive model capable of estimating the critical temperature of a superconductor from experimentally determined physico-chemical properties of the material (input variables): features extracted from the thermal conductivity, atomic radius, valence, electron affinity and atomic mass. This original model is built using a novel hybrid algorithm relied on the multivariate adaptive regression splines (MARS) technique in combination with a nature-inspired meta-heuristic optimization algorithm termed the whale optimization algorithm (WOA) that mimics the social behavior of humpback whales. Additionally, the Ridge, Lasso and Elastic-net regression models were fitted to the same experimental data for comparison purposes. The results of the current investigation indicate that the critical temperature of a superconductor can be successfully predicted using this proposed hybrid WOA/MARS-based model. Furthermore, the results obtained with the Ridge, Lasso and Elastic-net regression models are clearly worse than those obtained with the WOA/MARS-based model." @default.
- W3183906975 created "2021-08-02" @default.
- W3183906975 creator A5036495170 @default.
- W3183906975 creator A5038228277 @default.
- W3183906975 creator A5048429017 @default.
- W3183906975 date "2021-07-20" @default.
- W3183906975 modified "2023-09-24" @default.
- W3183906975 title "Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques" @default.
- W3183906975 cites W1971714101 @default.
- W3183906975 cites W1982298138 @default.
- W3183906975 cites W2029871071 @default.
- W3183906975 cites W2041976578 @default.
- W3183906975 cites W2051026972 @default.
- W3183906975 cites W2054359607 @default.
- W3183906975 cites W2075891641 @default.
- W3183906975 cites W2077562320 @default.
- W3183906975 cites W2085819713 @default.
- W3183906975 cites W2153689927 @default.
- W3183906975 cites W2290883490 @default.
- W3183906975 cites W2521143763 @default.
- W3183906975 cites W2615198793 @default.
- W3183906975 cites W2758107401 @default.
- W3183906975 cites W2766830746 @default.
- W3183906975 cites W2799862522 @default.
- W3183906975 cites W2801895994 @default.
- W3183906975 cites W2904298560 @default.
- W3183906975 cites W2919972822 @default.
- W3183906975 cites W2922096023 @default.
- W3183906975 cites W2945771794 @default.
- W3183906975 cites W2947725060 @default.
- W3183906975 cites W2963798770 @default.
- W3183906975 cites W2964853432 @default.
- W3183906975 cites W2973775716 @default.
- W3183906975 cites W3005735954 @default.
- W3183906975 cites W3017949903 @default.
- W3183906975 cites W3028038362 @default.
- W3183906975 cites W3034253215 @default.
- W3183906975 cites W3038583753 @default.
- W3183906975 cites W3091922942 @default.
- W3183906975 cites W3130055004 @default.
- W3183906975 cites W3132894783 @default.
- W3183906975 cites W4251207580 @default.
- W3183906975 cites W4294541781 @default.
- W3183906975 cites W836867855 @default.
- W3183906975 doi "https://doi.org/10.1007/s00521-021-06304-z" @default.
- W3183906975 hasPublicationYear "2021" @default.
- W3183906975 type Work @default.
- W3183906975 sameAs 3183906975 @default.
- W3183906975 citedByCount "16" @default.
- W3183906975 countsByYear W31839069752022 @default.
- W3183906975 countsByYear W31839069752023 @default.
- W3183906975 crossrefType "journal-article" @default.
- W3183906975 hasAuthorship W3183906975A5036495170 @default.
- W3183906975 hasAuthorship W3183906975A5038228277 @default.
- W3183906975 hasAuthorship W3183906975A5048429017 @default.
- W3183906975 hasBestOaLocation W31839069751 @default.
- W3183906975 hasConcept C105795698 @default.
- W3183906975 hasConcept C11413529 @default.
- W3183906975 hasConcept C119857082 @default.
- W3183906975 hasConcept C121332964 @default.
- W3183906975 hasConcept C12267149 @default.
- W3183906975 hasConcept C127313418 @default.
- W3183906975 hasConcept C1276947 @default.
- W3183906975 hasConcept C136764020 @default.
- W3183906975 hasConcept C148483581 @default.
- W3183906975 hasConcept C151730666 @default.
- W3183906975 hasConcept C152877465 @default.
- W3183906975 hasConcept C154945302 @default.
- W3183906975 hasConcept C192562407 @default.
- W3183906975 hasConcept C203868755 @default.
- W3183906975 hasConcept C32277403 @default.
- W3183906975 hasConcept C33923547 @default.
- W3183906975 hasConcept C37616216 @default.
- W3183906975 hasConcept C41008148 @default.
- W3183906975 hasConcept C44882253 @default.
- W3183906975 hasConcept C64946054 @default.
- W3183906975 hasConcept C83260615 @default.
- W3183906975 hasConcept C83546350 @default.
- W3183906975 hasConceptScore W3183906975C105795698 @default.
- W3183906975 hasConceptScore W3183906975C11413529 @default.
- W3183906975 hasConceptScore W3183906975C119857082 @default.
- W3183906975 hasConceptScore W3183906975C121332964 @default.
- W3183906975 hasConceptScore W3183906975C12267149 @default.
- W3183906975 hasConceptScore W3183906975C127313418 @default.
- W3183906975 hasConceptScore W3183906975C1276947 @default.
- W3183906975 hasConceptScore W3183906975C136764020 @default.
- W3183906975 hasConceptScore W3183906975C148483581 @default.
- W3183906975 hasConceptScore W3183906975C151730666 @default.
- W3183906975 hasConceptScore W3183906975C152877465 @default.
- W3183906975 hasConceptScore W3183906975C154945302 @default.
- W3183906975 hasConceptScore W3183906975C192562407 @default.
- W3183906975 hasConceptScore W3183906975C203868755 @default.
- W3183906975 hasConceptScore W3183906975C32277403 @default.
- W3183906975 hasConceptScore W3183906975C33923547 @default.
- W3183906975 hasConceptScore W3183906975C37616216 @default.
- W3183906975 hasConceptScore W3183906975C41008148 @default.
- W3183906975 hasConceptScore W3183906975C44882253 @default.
- W3183906975 hasConceptScore W3183906975C64946054 @default.