Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183946154> ?p ?o ?g. }
- W3183946154 abstract "<p>Electrocardiogram (ECG) is an authoritative source to diagnose and counter critical cardiovascular syndromes such as arrhythmia and myocardial infarction (MI). Current machine learning techniques either depend on manually extracted features or large and complex deep learning networks which merely utilize the 1D ECG signal directly. Since intelligent multimodal fusion can perform at the state-of-the-art level with an efficient deep network, therefore, in this paper, we propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification called Multimodal Image Fusion (MIF) and Multimodal Feature Fusion (MFF). At the input of these frameworks, we convert the raw ECG data into three different images using Gramian Angular Field (GAF), Recurrence Plot (RP) and Markov Transition Field (MTF). In MIF, we first perform image fusion by combining three imaging modalities to create a single image modality which serves as input to the Convolutional Neural Network (CNN). In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information necessary for better performance of classifier. These informational features are finally used to train a Support Vector Machine (SVM) classifier for ECG heart-beat classification. We demonstrate the superiority of the proposed fusion models by performing experiments on PhysioNet's MIT-BIH dataset for five distinct conditions of arrhythmias which are consistent with the AAMI EC57 protocols and on PTB diagnostics dataset for Myocardial Infarction (MI) classification. We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively. Source code at <a href=https://github.com/zaamad/ECG-Heartbeat-Classification-Using-Multimodal-Fusion target=_blank>https://github.com/zaamad/ECG-Heartbeat-Classification-Using-Multimodal-Fusion</a>.</p>" @default.
- W3183946154 created "2021-08-02" @default.
- W3183946154 creator A5001287866 @default.
- W3183946154 creator A5055091080 @default.
- W3183946154 creator A5069518008 @default.
- W3183946154 creator A5080258482 @default.
- W3183946154 date "2023-05-03" @default.
- W3183946154 modified "2023-09-27" @default.
- W3183946154 title "ECG Heartbeat Classification Using Multimodal Fusion" @default.
- W3183946154 cites W1527657402 @default.
- W3183946154 cites W1757870343 @default.
- W3183946154 cites W1972003923 @default.
- W3183946154 cites W1986438083 @default.
- W3183946154 cites W1996267020 @default.
- W3183946154 cites W2018651439 @default.
- W3183946154 cites W2026430219 @default.
- W3183946154 cites W2047181473 @default.
- W3183946154 cites W2050123950 @default.
- W3183946154 cites W2052873190 @default.
- W3183946154 cites W2061185532 @default.
- W3183946154 cites W2075112705 @default.
- W3183946154 cites W2095409369 @default.
- W3183946154 cites W2098297592 @default.
- W3183946154 cites W2099593264 @default.
- W3183946154 cites W2103308415 @default.
- W3183946154 cites W2114842946 @default.
- W3183946154 cites W2117624000 @default.
- W3183946154 cites W2124209734 @default.
- W3183946154 cites W2124785086 @default.
- W3183946154 cites W2143581538 @default.
- W3183946154 cites W2148143831 @default.
- W3183946154 cites W2158006878 @default.
- W3183946154 cites W2162800060 @default.
- W3183946154 cites W2163605009 @default.
- W3183946154 cites W2168791203 @default.
- W3183946154 cites W2291961022 @default.
- W3183946154 cites W2621205740 @default.
- W3183946154 cites W2702116941 @default.
- W3183946154 cites W2704923930 @default.
- W3183946154 cites W2744955641 @default.
- W3183946154 cites W2767583913 @default.
- W3183946154 cites W2768667713 @default.
- W3183946154 cites W2794228650 @default.
- W3183946154 cites W2802900481 @default.
- W3183946154 cites W2887119478 @default.
- W3183946154 cites W2904461396 @default.
- W3183946154 cites W2908591466 @default.
- W3183946154 cites W2909467556 @default.
- W3183946154 cites W2946152371 @default.
- W3183946154 cites W2953704539 @default.
- W3183946154 cites W2961638199 @default.
- W3183946154 cites W2963866024 @default.
- W3183946154 cites W2968315492 @default.
- W3183946154 cites W2970017847 @default.
- W3183946154 cites W2972055048 @default.
- W3183946154 cites W2979580092 @default.
- W3183946154 cites W2980055660 @default.
- W3183946154 cites W2984759351 @default.
- W3183946154 cites W2990196092 @default.
- W3183946154 cites W2994720754 @default.
- W3183946154 cites W2994793120 @default.
- W3183946154 cites W2997654184 @default.
- W3183946154 cites W3001936057 @default.
- W3183946154 cites W3007969083 @default.
- W3183946154 cites W3015692457 @default.
- W3183946154 cites W3016369805 @default.
- W3183946154 cites W3027608091 @default.
- W3183946154 cites W3037889795 @default.
- W3183946154 cites W3039868745 @default.
- W3183946154 cites W3081072690 @default.
- W3183946154 cites W3082016297 @default.
- W3183946154 cites W3092458367 @default.
- W3183946154 cites W3093699748 @default.
- W3183946154 cites W3106455851 @default.
- W3183946154 cites W3120205432 @default.
- W3183946154 cites W3126649223 @default.
- W3183946154 cites W3138182788 @default.
- W3183946154 cites W3208133533 @default.
- W3183946154 doi "https://doi.org/10.32920/22734317.v1" @default.
- W3183946154 hasPublicationYear "2023" @default.
- W3183946154 type Work @default.
- W3183946154 sameAs 3183946154 @default.
- W3183946154 citedByCount "0" @default.
- W3183946154 crossrefType "posted-content" @default.
- W3183946154 hasAuthorship W3183946154A5001287866 @default.
- W3183946154 hasAuthorship W3183946154A5055091080 @default.
- W3183946154 hasAuthorship W3183946154A5069518008 @default.
- W3183946154 hasAuthorship W3183946154A5080258482 @default.
- W3183946154 hasBestOaLocation W31839461541 @default.
- W3183946154 hasConcept C108583219 @default.
- W3183946154 hasConcept C12267149 @default.
- W3183946154 hasConcept C13852961 @default.
- W3183946154 hasConcept C153180895 @default.
- W3183946154 hasConcept C154945302 @default.
- W3183946154 hasConcept C38652104 @default.
- W3183946154 hasConcept C41008148 @default.
- W3183946154 hasConcept C81363708 @default.
- W3183946154 hasConceptScore W3183946154C108583219 @default.
- W3183946154 hasConceptScore W3183946154C12267149 @default.
- W3183946154 hasConceptScore W3183946154C13852961 @default.