Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183951330> ?p ?o ?g. }
- W3183951330 endingPage "126666" @default.
- W3183951330 startingPage "126666" @default.
- W3183951330 abstract "Long-term streamflow forecasting for a multisite river basin system can experience oscillation of spatio-temporal dependent forecast errors. Characterizing the dependent information and conducting spatio-temporal dependent forecast error correction can reduce the total uncertainty in real-time forecasting. On the basis of a single-site martingale model of forecast evolution (MMFE), which can simulate forecast uncertainty evolution over the temporal scale, this study developed a dynamic long-term streamflow probabilistic forecasting model that addresses spatio-temporal dependent error correction for a multisite system. Error characteristics and hybrid spatio-temporal forecast improvements with complex dependencies are captured by Copula function, which describes the systemwide evolution of forecast uncertainty. The proposed model was verified by forecasting the streamflow of the Hongze Lake–Luoma Lake system in China. The results revealed the following. 1) The spatio-temporal dependent error correction based on MMFE can refine the spatio-temporal dimension hybrid error information, which is helpful in improving forecast accuracy. 2) As the spatio-temporal dependence of forecast uncertainty is described using a Copula function, selection of the marginal distribution and connection function is flexible through combining statistical and informational characteristics of the errors, which is helpful in improving the fittedness of complex system error simulation. 3) Compared with the benchmark forecast model without correction, the proposed model greatly decreased forecast uncertainty by reducing the standard deviation of the errors, continuous ranked probability score (CRPS), and Brier score (BS) by nearly 40%, 11.4%, and 34.6%, respectively, and further reduce the CRPS by 2.1% on average (highest value: 3.7%) and reduce the BS by 1.2% on average (highest value: 2.0%) in comparison with only temporal correction. The results demonstrate that the proposed model improves the accuracy and reliability of probabilistic streamflow forecasting for complex water resource systems by reducing uncertainty." @default.
- W3183951330 created "2021-08-02" @default.
- W3183951330 creator A5002193108 @default.
- W3183951330 creator A5011057377 @default.
- W3183951330 creator A5014424306 @default.
- W3183951330 creator A5022879772 @default.
- W3183951330 creator A5025360519 @default.
- W3183951330 creator A5054176382 @default.
- W3183951330 creator A5054452844 @default.
- W3183951330 creator A5077877575 @default.
- W3183951330 creator A5078691114 @default.
- W3183951330 date "2021-10-01" @default.
- W3183951330 modified "2023-10-17" @default.
- W3183951330 title "Dynamic long-term streamflow probabilistic forecasting model for a multisite system considering real-time forecast updating through spatio-temporal dependent error correction" @default.
- W3183951330 cites W1527594523 @default.
- W3183951330 cites W1827554748 @default.
- W3183951330 cites W1853896282 @default.
- W3183951330 cites W1921853374 @default.
- W3183951330 cites W1965549091 @default.
- W3183951330 cites W1970102934 @default.
- W3183951330 cites W1977900532 @default.
- W3183951330 cites W1982063384 @default.
- W3183951330 cites W1987924810 @default.
- W3183951330 cites W2010094966 @default.
- W3183951330 cites W2012798851 @default.
- W3183951330 cites W2014268383 @default.
- W3183951330 cites W2015067844 @default.
- W3183951330 cites W2020930300 @default.
- W3183951330 cites W2024099160 @default.
- W3183951330 cites W2025720061 @default.
- W3183951330 cites W2034168691 @default.
- W3183951330 cites W2041795629 @default.
- W3183951330 cites W2043644439 @default.
- W3183951330 cites W2047139958 @default.
- W3183951330 cites W2047634553 @default.
- W3183951330 cites W2068914392 @default.
- W3183951330 cites W2070774145 @default.
- W3183951330 cites W2073241381 @default.
- W3183951330 cites W2085729532 @default.
- W3183951330 cites W2097950219 @default.
- W3183951330 cites W2107657012 @default.
- W3183951330 cites W2118020555 @default.
- W3183951330 cites W2119274931 @default.
- W3183951330 cites W2120933360 @default.
- W3183951330 cites W2127462804 @default.
- W3183951330 cites W2143138898 @default.
- W3183951330 cites W2162520789 @default.
- W3183951330 cites W2170207977 @default.
- W3183951330 cites W2280883867 @default.
- W3183951330 cites W2473294939 @default.
- W3183951330 cites W2514863451 @default.
- W3183951330 cites W2593080009 @default.
- W3183951330 cites W2607268889 @default.
- W3183951330 cites W2621204779 @default.
- W3183951330 cites W2641589888 @default.
- W3183951330 cites W2775405370 @default.
- W3183951330 cites W2797250849 @default.
- W3183951330 cites W2963797212 @default.
- W3183951330 cites W2969299207 @default.
- W3183951330 cites W2994031064 @default.
- W3183951330 cites W2998812740 @default.
- W3183951330 cites W3003576014 @default.
- W3183951330 cites W3016199669 @default.
- W3183951330 cites W3043558302 @default.
- W3183951330 cites W3047527404 @default.
- W3183951330 cites W3083738814 @default.
- W3183951330 cites W3084396145 @default.
- W3183951330 cites W4237324704 @default.
- W3183951330 doi "https://doi.org/10.1016/j.jhydrol.2021.126666" @default.
- W3183951330 hasPublicationYear "2021" @default.
- W3183951330 type Work @default.
- W3183951330 sameAs 3183951330 @default.
- W3183951330 citedByCount "15" @default.
- W3183951330 countsByYear W31839513302022 @default.
- W3183951330 countsByYear W31839513302023 @default.
- W3183951330 crossrefType "journal-article" @default.
- W3183951330 hasAuthorship W3183951330A5002193108 @default.
- W3183951330 hasAuthorship W3183951330A5011057377 @default.
- W3183951330 hasAuthorship W3183951330A5014424306 @default.
- W3183951330 hasAuthorship W3183951330A5022879772 @default.
- W3183951330 hasAuthorship W3183951330A5025360519 @default.
- W3183951330 hasAuthorship W3183951330A5054176382 @default.
- W3183951330 hasAuthorship W3183951330A5054452844 @default.
- W3183951330 hasAuthorship W3183951330A5077877575 @default.
- W3183951330 hasAuthorship W3183951330A5078691114 @default.
- W3183951330 hasConcept C105795698 @default.
- W3183951330 hasConcept C124101348 @default.
- W3183951330 hasConcept C126645576 @default.
- W3183951330 hasConcept C138885662 @default.
- W3183951330 hasConcept C149782125 @default.
- W3183951330 hasConcept C154945302 @default.
- W3183951330 hasConcept C166851805 @default.
- W3183951330 hasConcept C170061395 @default.
- W3183951330 hasConcept C17618745 @default.
- W3183951330 hasConcept C183195422 @default.
- W3183951330 hasConcept C205649164 @default.
- W3183951330 hasConcept C22679943 @default.
- W3183951330 hasConcept C27206212 @default.