Matches in SemOpenAlex for { <https://semopenalex.org/work/W3183965237> ?p ?o ?g. }
- W3183965237 endingPage "2173" @default.
- W3183965237 startingPage "2159" @default.
- W3183965237 abstract "1. Joint Species Distribution models (JSDMs) explain spatial variation in community composition by contributions of the environment, biotic associations, and possibly spatially structured residual covariance. They show great promise as a general analytical framework for community ecology and macroecology, but current JSDMs, even when approximated by latent variables, scale poorly on large datasets, limiting their usefulness for currently emerging big (e.g., metabarcoding and metagenomics) community datasets. 2. Here, we present a novel, more scalable JSDM (sjSDM) that circumvents the need to use latent variables by using a Monte-Carlo integration of the joint JSDM likelihood and allows flexible elastic net regularization on all model components. We implemented sjSDM in PyTorch, a modern machine learning framework that can make use of CPU and GPU calculations. Using simulated communities with known species-species associations and different number of species and sites, we compare sjSDM with state-of-the-art JSDM implementations to determine computational runtimes and accuracy of the inferred species-species and species-environmental associations. 3. We find that sjSDM is orders of magnitude faster than existing JSDM algorithms (even when run on the CPU) and can be scaled to very large datasets. Despite the dramatically improved speed, sjSDM produces more accurate estimates of species association structures than alternative JSDM implementations. We demonstrate the applicability of sjSDM to big community data using eDNA case study with thousands of fungi operational taxonomic units (OTU). 4. Our sjSDM approach makes the analysis of JSDMs to large community datasets with hundreds or thousands of species possible, substantially extending the applicability of JSDMs in ecology. We provide our method in an R package to facilitate its applicability for practical data analysis." @default.
- W3183965237 created "2021-08-02" @default.
- W3183965237 creator A5002648105 @default.
- W3183965237 creator A5043551381 @default.
- W3183965237 date "2021-08-12" @default.
- W3183965237 modified "2023-10-15" @default.
- W3183965237 title "A new joint species distribution model for faster and more accurate inference of species associations from big community data" @default.
- W3183965237 cites W114517082 @default.
- W3183965237 cites W1541774929 @default.
- W3183965237 cites W1582907243 @default.
- W3183965237 cites W1774267230 @default.
- W3183965237 cites W1906079673 @default.
- W3183965237 cites W1919815506 @default.
- W3183965237 cites W1920817623 @default.
- W3183965237 cites W1960914988 @default.
- W3183965237 cites W1979060637 @default.
- W3183965237 cites W2006802554 @default.
- W3183965237 cites W2025992337 @default.
- W3183965237 cites W2032113267 @default.
- W3183965237 cites W2038224223 @default.
- W3183965237 cites W2052077920 @default.
- W3183965237 cites W2063695906 @default.
- W3183965237 cites W2070647937 @default.
- W3183965237 cites W2080108465 @default.
- W3183965237 cites W2081343114 @default.
- W3183965237 cites W2090686691 @default.
- W3183965237 cites W2094447394 @default.
- W3183965237 cites W2097601813 @default.
- W3183965237 cites W2098074542 @default.
- W3183965237 cites W2098601886 @default.
- W3183965237 cites W2108144899 @default.
- W3183965237 cites W2122825543 @default.
- W3183965237 cites W2123127253 @default.
- W3183965237 cites W2125640623 @default.
- W3183965237 cites W2129163149 @default.
- W3183965237 cites W2146688202 @default.
- W3183965237 cites W2147323780 @default.
- W3183965237 cites W2150597302 @default.
- W3183965237 cites W2155235681 @default.
- W3183965237 cites W2157728356 @default.
- W3183965237 cites W2161265279 @default.
- W3183965237 cites W2176706581 @default.
- W3183965237 cites W2253095119 @default.
- W3183965237 cites W2515706791 @default.
- W3183965237 cites W2519994275 @default.
- W3183965237 cites W2548470269 @default.
- W3183965237 cites W2550533731 @default.
- W3183965237 cites W2560136348 @default.
- W3183965237 cites W2567936177 @default.
- W3183965237 cites W2597532406 @default.
- W3183965237 cites W2606174355 @default.
- W3183965237 cites W2616923088 @default.
- W3183965237 cites W2619821824 @default.
- W3183965237 cites W2754769271 @default.
- W3183965237 cites W2782257158 @default.
- W3183965237 cites W2791581205 @default.
- W3183965237 cites W2884378407 @default.
- W3183965237 cites W2896076232 @default.
- W3183965237 cites W2896983921 @default.
- W3183965237 cites W2897059744 @default.
- W3183965237 cites W2906409355 @default.
- W3183965237 cites W2908611025 @default.
- W3183965237 cites W2922355292 @default.
- W3183965237 cites W2941774662 @default.
- W3183965237 cites W2944566185 @default.
- W3183965237 cites W2947799133 @default.
- W3183965237 cites W2949455074 @default.
- W3183965237 cites W2952113774 @default.
- W3183965237 cites W2952516441 @default.
- W3183965237 cites W2952636636 @default.
- W3183965237 cites W2954154811 @default.
- W3183965237 cites W2967530642 @default.
- W3183965237 cites W2973916775 @default.
- W3183965237 cites W2988823799 @default.
- W3183965237 cites W2996001435 @default.
- W3183965237 cites W2998499873 @default.
- W3183965237 cites W3004494137 @default.
- W3183965237 cites W3006909503 @default.
- W3183965237 cites W3026847252 @default.
- W3183965237 cites W3088555558 @default.
- W3183965237 cites W3095049225 @default.
- W3183965237 cites W3105385664 @default.
- W3183965237 cites W3124428823 @default.
- W3183965237 cites W3131981437 @default.
- W3183965237 cites W3133909233 @default.
- W3183965237 cites W3145271326 @default.
- W3183965237 cites W4241635929 @default.
- W3183965237 cites W4292494783 @default.
- W3183965237 doi "https://doi.org/10.1111/2041-210x.13687" @default.
- W3183965237 hasPublicationYear "2021" @default.
- W3183965237 type Work @default.
- W3183965237 sameAs 3183965237 @default.
- W3183965237 citedByCount "15" @default.
- W3183965237 countsByYear W31839652372021 @default.
- W3183965237 countsByYear W31839652372022 @default.
- W3183965237 countsByYear W31839652372023 @default.
- W3183965237 crossrefType "journal-article" @default.
- W3183965237 hasAuthorship W3183965237A5002648105 @default.