Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184069662> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3184069662 endingPage "70" @default.
- W3184069662 startingPage "45" @default.
- W3184069662 abstract "Ring-SIS based $Sigma$-protocols require a challenge set $mathcal{C}$ in some ring $R$, usually an order in a number field $L$. These $Sigma$-protocols impose various requirements on the subset $mathcal{C}$, and finding a good, or even optimal, challenge set is a non-trivial task that involves making various trade-offs. Ring-SIS based $Sigma$-protocols require a challenge set $mathcal{C}$ in some ring $R$, usually an order in a number field $L$. These $Sigma$-protocols impose various requirements on the subset $mathcal{C}$, and finding a good, or even optimal, challenge set is a non-trivial task that involves making various trade-offs. In particular, (1) the set $mathcal{C}$ should be `large', (2) elements in $mathcal{C}$ should be `small', and (3) differences of distinct elements in $mathcal{C}$ should be invertible modulo a rational prime $p$. Moreover, for efficiency purposes, it is desirable that (4) the prime $p$ is small, and that (5) it splits in many factors in the number field $L$. These requirements on $mathcal{C}$ are subject to certain trade-offs, e.g., between the splitting behavior of the prime $p$ and its size. Lyubashevsky and Seiler (Eurocrypt 2018) have studied these trade-offs for subrings of cyclotomic number fields. Cyclotomic number fields possess convenient properties and as a result most Ring-SIS based protocols are defined over these specific fields. However, recent attacks have shown that, in certain protocols, these convenient properties can be exploited by adversaries, thereby weakening or even breaking the cryptographic protocols. In this work, we revisit the results of Lyubashevsky and Seiler and show that they follow from standard Galois theory, thereby simplifying their proofs. Subsequently, this approach leads to a natural generalization from cyclotomic to arbitrary number fields. We apply the generalized results to construct challenge sets in trinomial number fields of the form $mathbb{Q}[X]/(f)$ with $f=X^n+aX^k+b in mathbb{Z}[X]$ irreducible. Along the way we prove a conjectured result on the practical applicability for cyclotomic number fields and prove the optimality of certain constructions. Finally, we find a new construction for challenge sets resulting in smaller prime sizes at the cost of slightly increasing the $ell_2$-norm of the challenges." @default.
- W3184069662 created "2021-08-02" @default.
- W3184069662 creator A5003863612 @default.
- W3184069662 creator A5019628468 @default.
- W3184069662 creator A5063899061 @default.
- W3184069662 date "2021-06-12" @default.
- W3184069662 modified "2023-09-27" @default.
- W3184069662 title "A Note on Short Invertible Ring Elements and Applications to Cyclotomic and Trinomials Number Fields" @default.
- W3184069662 hasPublicationYear "2021" @default.
- W3184069662 type Work @default.
- W3184069662 sameAs 3184069662 @default.
- W3184069662 citedByCount "0" @default.
- W3184069662 crossrefType "journal-article" @default.
- W3184069662 hasAuthorship W3184069662A5003863612 @default.
- W3184069662 hasAuthorship W3184069662A5019628468 @default.
- W3184069662 hasAuthorship W3184069662A5063899061 @default.
- W3184069662 hasConcept C10138342 @default.
- W3184069662 hasConcept C113429393 @default.
- W3184069662 hasConcept C114614502 @default.
- W3184069662 hasConcept C118615104 @default.
- W3184069662 hasConcept C121332964 @default.
- W3184069662 hasConcept C12657307 @default.
- W3184069662 hasConcept C162324750 @default.
- W3184069662 hasConcept C177264268 @default.
- W3184069662 hasConcept C178790620 @default.
- W3184069662 hasConcept C182306322 @default.
- W3184069662 hasConcept C184992742 @default.
- W3184069662 hasConcept C185592680 @default.
- W3184069662 hasConcept C199360897 @default.
- W3184069662 hasConcept C202444582 @default.
- W3184069662 hasConcept C2778049214 @default.
- W3184069662 hasConcept C2780378348 @default.
- W3184069662 hasConcept C33923547 @default.
- W3184069662 hasConcept C41008148 @default.
- W3184069662 hasConcept C54732982 @default.
- W3184069662 hasConcept C62520636 @default.
- W3184069662 hasConcept C96442724 @default.
- W3184069662 hasConcept C9652623 @default.
- W3184069662 hasConceptScore W3184069662C10138342 @default.
- W3184069662 hasConceptScore W3184069662C113429393 @default.
- W3184069662 hasConceptScore W3184069662C114614502 @default.
- W3184069662 hasConceptScore W3184069662C118615104 @default.
- W3184069662 hasConceptScore W3184069662C121332964 @default.
- W3184069662 hasConceptScore W3184069662C12657307 @default.
- W3184069662 hasConceptScore W3184069662C162324750 @default.
- W3184069662 hasConceptScore W3184069662C177264268 @default.
- W3184069662 hasConceptScore W3184069662C178790620 @default.
- W3184069662 hasConceptScore W3184069662C182306322 @default.
- W3184069662 hasConceptScore W3184069662C184992742 @default.
- W3184069662 hasConceptScore W3184069662C185592680 @default.
- W3184069662 hasConceptScore W3184069662C199360897 @default.
- W3184069662 hasConceptScore W3184069662C202444582 @default.
- W3184069662 hasConceptScore W3184069662C2778049214 @default.
- W3184069662 hasConceptScore W3184069662C2780378348 @default.
- W3184069662 hasConceptScore W3184069662C33923547 @default.
- W3184069662 hasConceptScore W3184069662C41008148 @default.
- W3184069662 hasConceptScore W3184069662C54732982 @default.
- W3184069662 hasConceptScore W3184069662C62520636 @default.
- W3184069662 hasConceptScore W3184069662C96442724 @default.
- W3184069662 hasConceptScore W3184069662C9652623 @default.
- W3184069662 hasIssue "1" @default.
- W3184069662 hasLocation W31840696621 @default.
- W3184069662 hasOpenAccess W3184069662 @default.
- W3184069662 hasPrimaryLocation W31840696621 @default.
- W3184069662 hasRelatedWork W1616112947 @default.
- W3184069662 hasRelatedWork W1648862477 @default.
- W3184069662 hasRelatedWork W1984344351 @default.
- W3184069662 hasRelatedWork W2063706894 @default.
- W3184069662 hasRelatedWork W2086937339 @default.
- W3184069662 hasRelatedWork W2478360461 @default.
- W3184069662 hasRelatedWork W2507334102 @default.
- W3184069662 hasRelatedWork W2576312643 @default.
- W3184069662 hasRelatedWork W2734530020 @default.
- W3184069662 hasRelatedWork W2744309868 @default.
- W3184069662 hasRelatedWork W2783626036 @default.
- W3184069662 hasRelatedWork W2891131443 @default.
- W3184069662 hasRelatedWork W2912644552 @default.
- W3184069662 hasRelatedWork W2920082636 @default.
- W3184069662 hasRelatedWork W2966967001 @default.
- W3184069662 hasRelatedWork W2986843681 @default.
- W3184069662 hasRelatedWork W3040677706 @default.
- W3184069662 hasRelatedWork W3043360678 @default.
- W3184069662 hasRelatedWork W3099975487 @default.
- W3184069662 hasRelatedWork W2395467060 @default.
- W3184069662 hasVolume "1" @default.
- W3184069662 isParatext "false" @default.
- W3184069662 isRetracted "false" @default.
- W3184069662 magId "3184069662" @default.
- W3184069662 workType "article" @default.