Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184072783> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3184072783 endingPage "256" @default.
- W3184072783 startingPage "255" @default.
- W3184072783 abstract "2xxx‐series Al alloys are Cu containing age‐hardenable alloys, which are strengthened by numerous metastable precipitates formed during heat treatment. Many different precipitates exist, some of which are not well defined crystallographically. However, phases known to contribute particularly to strengthening and that exist in the over‐aged condition are: θ' and T1 in Al‐Cu‐Li alloys [1], and Ω and S in Al‐Mg‐Cu‐Ag alloys [1]. These precipitates have various morphologies, ranging from long needles to thin plates, and coexist with inclusion particles as well as with dispersoids. The resulting microstructure is complex both in terms of coexistence and by precipitates deviating from simply defined phases. This makes complete characterization a demanding task for which techniques are required to enable statistical treatment of precipitate distributions in terms of their atomic structure. Here, we apply scanning precession electron diffraction (SPED) to heat‐treated Al‐Cu‐Li and Al‐Mg‐Cu‐Ag alloys, shedding light on the distribution of phases present and the complex interplay between these microstructural features. SPED involves scanning the electron beam across the specimen and recording a PED pattern at each point by rocking a focused probe in a hollow cone above the specimen, and de‐rocking it below. In this way, integrated diffraction intensities are recorded in the geometry of a conventional electron diffraction pattern [2]. A 4D dataset is obtained comprising a 2D PED pattern at each position in the 2D scan region. Combined with subsequent data processing, this constitutes a powerful method for extracting valuable crystallographic information and orientation relationships in complex multiphase materials [3]. In this work, SPED was performed using a NanoMEGAS DigiSTAR scan generator fitted to a JEOL 2100F FEG‐(S)TEM operated at 200 kV, with a precession angle of 1º and a step size of 4.5 nm. Typical datasets comprised 90 000 diffraction patterns (DPs), which were analysed using the open source platform HyperSpy [4] as described below. Obtained results from an Al‐Cu‐Li alloy are shown here as an example. All DPs in the SPED dataset were first summed (Fig. 1) and compared to a simulated DP, including the Al‐matrix in the [001] orientation and the aforementioned θ'‐ and T1 precipitates (Fig. 2). This allowed identification of reflections associated with these particular phases. These phases are then visualised in ‘virtual dark‐field’ (VDF) images, formed by plotting the intensity in pixels around selected reflections as a function of probe position (Fig. 3 and 4). For example, the thin T1‐precipitate plates are seen on {111} Al planes inclined relative to [001] Al , and it is noted that even overlapping plates can still be discerned and visualized. The obtained VDF images exhibit a sharper, more consistent contrast between precipitate phases and the Al matrix as compared conventional imaging techniques, such as dark‐field TEM. More sophisticated analysis applies machine learning in order to identify the main component patterns in the data, as well as their spatial localisation referred to as ‘loading maps’. These ‘loading maps’ look similar to VDF images but are obtained by an automated and objective approach, requiring little or no prior knowledge. This opens the possibility of identifying features with unexpected crystallographic structures. The analysis approaches demonstrated in this work offer important insight into the complex microstructures of these Al alloys." @default.
- W3184072783 created "2021-08-02" @default.
- W3184072783 creator A5023271151 @default.
- W3184072783 creator A5031945746 @default.
- W3184072783 creator A5052284915 @default.
- W3184072783 creator A5061050580 @default.
- W3184072783 creator A5070894491 @default.
- W3184072783 date "2016-12-20" @default.
- W3184072783 modified "2023-10-17" @default.
- W3184072783 title "Phase mapping of 2xxx-series aluminium alloys by scanning precession electron diffraction" @default.
- W3184072783 cites W2041878071 @default.
- W3184072783 cites W2047015819 @default.
- W3184072783 cites W2145910217 @default.
- W3184072783 doi "https://doi.org/10.1002/9783527808465.emc2016.5248" @default.
- W3184072783 hasPublicationYear "2016" @default.
- W3184072783 type Work @default.
- W3184072783 sameAs 3184072783 @default.
- W3184072783 citedByCount "0" @default.
- W3184072783 crossrefType "other" @default.
- W3184072783 hasAuthorship W3184072783A5023271151 @default.
- W3184072783 hasAuthorship W3184072783A5031945746 @default.
- W3184072783 hasAuthorship W3184072783A5052284915 @default.
- W3184072783 hasAuthorship W3184072783A5061050580 @default.
- W3184072783 hasAuthorship W3184072783A5070894491 @default.
- W3184072783 hasBestOaLocation W31840727831 @default.
- W3184072783 hasConcept C107054158 @default.
- W3184072783 hasConcept C120665830 @default.
- W3184072783 hasConcept C121332964 @default.
- W3184072783 hasConcept C153294291 @default.
- W3184072783 hasConcept C159985019 @default.
- W3184072783 hasConcept C178790620 @default.
- W3184072783 hasConcept C185592680 @default.
- W3184072783 hasConcept C191897082 @default.
- W3184072783 hasConcept C192562407 @default.
- W3184072783 hasConcept C207114421 @default.
- W3184072783 hasConcept C26771246 @default.
- W3184072783 hasConcept C2776319068 @default.
- W3184072783 hasConcept C44280652 @default.
- W3184072783 hasConcept C513153333 @default.
- W3184072783 hasConcept C77557913 @default.
- W3184072783 hasConcept C8010536 @default.
- W3184072783 hasConcept C87976508 @default.
- W3184072783 hasConceptScore W3184072783C107054158 @default.
- W3184072783 hasConceptScore W3184072783C120665830 @default.
- W3184072783 hasConceptScore W3184072783C121332964 @default.
- W3184072783 hasConceptScore W3184072783C153294291 @default.
- W3184072783 hasConceptScore W3184072783C159985019 @default.
- W3184072783 hasConceptScore W3184072783C178790620 @default.
- W3184072783 hasConceptScore W3184072783C185592680 @default.
- W3184072783 hasConceptScore W3184072783C191897082 @default.
- W3184072783 hasConceptScore W3184072783C192562407 @default.
- W3184072783 hasConceptScore W3184072783C207114421 @default.
- W3184072783 hasConceptScore W3184072783C26771246 @default.
- W3184072783 hasConceptScore W3184072783C2776319068 @default.
- W3184072783 hasConceptScore W3184072783C44280652 @default.
- W3184072783 hasConceptScore W3184072783C513153333 @default.
- W3184072783 hasConceptScore W3184072783C77557913 @default.
- W3184072783 hasConceptScore W3184072783C8010536 @default.
- W3184072783 hasConceptScore W3184072783C87976508 @default.
- W3184072783 hasLocation W31840727831 @default.
- W3184072783 hasOpenAccess W3184072783 @default.
- W3184072783 hasPrimaryLocation W31840727831 @default.
- W3184072783 hasRelatedWork W1992194403 @default.
- W3184072783 hasRelatedWork W2014792072 @default.
- W3184072783 hasRelatedWork W2020485099 @default.
- W3184072783 hasRelatedWork W2045377508 @default.
- W3184072783 hasRelatedWork W2056546994 @default.
- W3184072783 hasRelatedWork W2068113961 @default.
- W3184072783 hasRelatedWork W2351215608 @default.
- W3184072783 hasRelatedWork W2362603327 @default.
- W3184072783 hasRelatedWork W2383229841 @default.
- W3184072783 hasRelatedWork W3036925724 @default.
- W3184072783 isParatext "false" @default.
- W3184072783 isRetracted "false" @default.
- W3184072783 magId "3184072783" @default.
- W3184072783 workType "other" @default.