Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184232885> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3184232885 endingPage "953" @default.
- W3184232885 startingPage "949" @default.
- W3184232885 abstract "To solve the problem that standard image decomposition cannot conduct image decomposition of basketball shooting angle according to the change of basketball projection Angle, an intelligent visual image decomposition method of basketball projection angle using odd-difference value decomposition was proposed. By analyzing the change of basketball shooting angle under different shooting conditions, the basketball shooting angle is determined. Based on this, singular value decomposition is introduced to judge the image decomposition of intelligent vision. Observations have shown that the intelligent vision image decomposition judgment method can improve the image contrast of shooting motion decomposition. In the shortest time, according to the change of basketball projection angle, the shooting motion image decomposition is fulfilled. In order to improve the accuracy of human motion recognition in videos and computation of large-scale data sets, a motion recognition technique by leveraging double-core extreme learning machine and deep learning technology are proposed. In the first layer of the double-core extreme learning component, the linear kernel extreme learning machine is used to predict the dense trajectory characteristics and deep learning characteristics. In the second layer, dense trajectory features are combined with deep learning features. In deep features, deep video features are fused with video RGB trichromatic features as deep features. Simulation experiments are conducted on a massive-scale and real-world data sets and a small basketball gesture data set. The experimental results have shown that our method exhibits a high recognition accuracy for both data sets. The analysis results have shown that the improved model has higher recognition rate and better action recognition effect than its competitors." @default.
- W3184232885 created "2021-08-02" @default.
- W3184232885 creator A5037933701 @default.
- W3184232885 creator A5038714931 @default.
- W3184232885 creator A5058491122 @default.
- W3184232885 date "2021-12-01" @default.
- W3184232885 modified "2023-10-05" @default.
- W3184232885 title "Basketball shooting angle calculation and analysis by deeply-learned vision model" @default.
- W3184232885 cites W1522734439 @default.
- W3184232885 cites W1965895201 @default.
- W3184232885 cites W2026131661 @default.
- W3184232885 cites W2032764504 @default.
- W3184232885 cites W2033743519 @default.
- W3184232885 cites W2063827895 @default.
- W3184232885 cites W2089513492 @default.
- W3184232885 cites W2101674911 @default.
- W3184232885 cites W978857790 @default.
- W3184232885 doi "https://doi.org/10.1016/j.future.2021.07.020" @default.
- W3184232885 hasPublicationYear "2021" @default.
- W3184232885 type Work @default.
- W3184232885 sameAs 3184232885 @default.
- W3184232885 citedByCount "8" @default.
- W3184232885 countsByYear W31842328852021 @default.
- W3184232885 countsByYear W31842328852022 @default.
- W3184232885 countsByYear W31842328852023 @default.
- W3184232885 crossrefType "journal-article" @default.
- W3184232885 hasAuthorship W3184232885A5037933701 @default.
- W3184232885 hasAuthorship W3184232885A5038714931 @default.
- W3184232885 hasAuthorship W3184232885A5058491122 @default.
- W3184232885 hasConcept C103189561 @default.
- W3184232885 hasConcept C108583219 @default.
- W3184232885 hasConcept C11413529 @default.
- W3184232885 hasConcept C124681953 @default.
- W3184232885 hasConcept C154945302 @default.
- W3184232885 hasConcept C166957645 @default.
- W3184232885 hasConcept C18903297 @default.
- W3184232885 hasConcept C2780150128 @default.
- W3184232885 hasConcept C31972630 @default.
- W3184232885 hasConcept C41008148 @default.
- W3184232885 hasConcept C50644808 @default.
- W3184232885 hasConcept C57493831 @default.
- W3184232885 hasConcept C82990744 @default.
- W3184232885 hasConcept C86803240 @default.
- W3184232885 hasConcept C95457728 @default.
- W3184232885 hasConceptScore W3184232885C103189561 @default.
- W3184232885 hasConceptScore W3184232885C108583219 @default.
- W3184232885 hasConceptScore W3184232885C11413529 @default.
- W3184232885 hasConceptScore W3184232885C124681953 @default.
- W3184232885 hasConceptScore W3184232885C154945302 @default.
- W3184232885 hasConceptScore W3184232885C166957645 @default.
- W3184232885 hasConceptScore W3184232885C18903297 @default.
- W3184232885 hasConceptScore W3184232885C2780150128 @default.
- W3184232885 hasConceptScore W3184232885C31972630 @default.
- W3184232885 hasConceptScore W3184232885C41008148 @default.
- W3184232885 hasConceptScore W3184232885C50644808 @default.
- W3184232885 hasConceptScore W3184232885C57493831 @default.
- W3184232885 hasConceptScore W3184232885C82990744 @default.
- W3184232885 hasConceptScore W3184232885C86803240 @default.
- W3184232885 hasConceptScore W3184232885C95457728 @default.
- W3184232885 hasLocation W31842328851 @default.
- W3184232885 hasOpenAccess W3184232885 @default.
- W3184232885 hasPrimaryLocation W31842328851 @default.
- W3184232885 hasRelatedWork W2052518016 @default.
- W3184232885 hasRelatedWork W2081022503 @default.
- W3184232885 hasRelatedWork W2085956791 @default.
- W3184232885 hasRelatedWork W2283162247 @default.
- W3184232885 hasRelatedWork W2314488738 @default.
- W3184232885 hasRelatedWork W2524507886 @default.
- W3184232885 hasRelatedWork W2767823485 @default.
- W3184232885 hasRelatedWork W2771653066 @default.
- W3184232885 hasRelatedWork W2901949253 @default.
- W3184232885 hasRelatedWork W4212983513 @default.
- W3184232885 hasVolume "125" @default.
- W3184232885 isParatext "false" @default.
- W3184232885 isRetracted "false" @default.
- W3184232885 magId "3184232885" @default.
- W3184232885 workType "article" @default.