Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184235979> ?p ?o ?g. }
- W3184235979 abstract "The accurate classification of crop pests and diseases is essential for their prevention and control. However, datasets of pest and disease images collected in the field usually exhibit long-tailed distributions with heavy category imbalance, posing great challenges for a deep recognition and classification model. This paper proposes a novel convolutional rebalancing network to classify rice pests and diseases from image datasets collected in the field. To improve the classification performance, the proposed network includes a convolutional rebalancing module, an image augmentation module, and a feature fusion module. In the convolutional rebalancing module, instance-balanced sampling is used to extract features of the images in the rice pest and disease dataset, while reversed sampling is used to improve feature extraction of the categories with fewer images in the dataset. Building on the convolutional rebalancing module, we design an image augmentation module to augment the training data effectively. To further enhance the classification performance, a feature fusion module fuses the image features learned by the convolutional rebalancing module and ensures that the feature extraction of the imbalanced dataset is more comprehensive. Extensive experiments in the large-scale imbalanced dataset of rice pests and diseases (18,391 images), publicly available plant image datasets (Flavia, Swedish Leaf, and UCI Leaf) and pest image datasets (SMALL and IP102) verify the robustness of the proposed network, and the results demonstrate its superior performance over state-of-the-art methods, with an accuracy of 97.58% on rice pest and disease image dataset. We conclude that the proposed network can provide an important tool for the intelligent control of rice pests and diseases in the field." @default.
- W3184235979 created "2021-08-02" @default.
- W3184235979 creator A5004962242 @default.
- W3184235979 creator A5009590736 @default.
- W3184235979 creator A5045789684 @default.
- W3184235979 creator A5059447203 @default.
- W3184235979 creator A5061330271 @default.
- W3184235979 creator A5078273675 @default.
- W3184235979 date "2021-07-05" @default.
- W3184235979 modified "2023-09-26" @default.
- W3184235979 title "Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field" @default.
- W3184235979 cites W2148143831 @default.
- W3184235979 cites W2220414802 @default.
- W3184235979 cites W2585123518 @default.
- W3184235979 cites W2588561018 @default.
- W3184235979 cites W2731165298 @default.
- W3184235979 cites W2755994691 @default.
- W3184235979 cites W2767106145 @default.
- W3184235979 cites W2781292787 @default.
- W3184235979 cites W2791568081 @default.
- W3184235979 cites W2902625477 @default.
- W3184235979 cites W2908694412 @default.
- W3184235979 cites W2909498127 @default.
- W3184235979 cites W2911433502 @default.
- W3184235979 cites W2914201981 @default.
- W3184235979 cites W2937245784 @default.
- W3184235979 cites W2943973036 @default.
- W3184235979 cites W2963212406 @default.
- W3184235979 cites W2970226366 @default.
- W3184235979 cites W2982556035 @default.
- W3184235979 cites W2996289226 @default.
- W3184235979 cites W2998548240 @default.
- W3184235979 cites W3001553836 @default.
- W3184235979 cites W3010225408 @default.
- W3184235979 cites W3014860971 @default.
- W3184235979 cites W3038379525 @default.
- W3184235979 cites W3089559094 @default.
- W3184235979 cites W3092254810 @default.
- W3184235979 cites W3106500619 @default.
- W3184235979 cites W3108944572 @default.
- W3184235979 cites W3111506096 @default.
- W3184235979 cites W3118209175 @default.
- W3184235979 cites W3119027282 @default.
- W3184235979 cites W3164394607 @default.
- W3184235979 cites W639708223 @default.
- W3184235979 doi "https://doi.org/10.3389/fpls.2021.671134" @default.
- W3184235979 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8287420" @default.
- W3184235979 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34290724" @default.
- W3184235979 hasPublicationYear "2021" @default.
- W3184235979 type Work @default.
- W3184235979 sameAs 3184235979 @default.
- W3184235979 citedByCount "8" @default.
- W3184235979 countsByYear W31842359792022 @default.
- W3184235979 countsByYear W31842359792023 @default.
- W3184235979 crossrefType "journal-article" @default.
- W3184235979 hasAuthorship W3184235979A5004962242 @default.
- W3184235979 hasAuthorship W3184235979A5009590736 @default.
- W3184235979 hasAuthorship W3184235979A5045789684 @default.
- W3184235979 hasAuthorship W3184235979A5059447203 @default.
- W3184235979 hasAuthorship W3184235979A5061330271 @default.
- W3184235979 hasAuthorship W3184235979A5078273675 @default.
- W3184235979 hasBestOaLocation W31842359791 @default.
- W3184235979 hasConcept C104317684 @default.
- W3184235979 hasConcept C115961682 @default.
- W3184235979 hasConcept C138885662 @default.
- W3184235979 hasConcept C153180895 @default.
- W3184235979 hasConcept C154945302 @default.
- W3184235979 hasConcept C202444582 @default.
- W3184235979 hasConcept C22508944 @default.
- W3184235979 hasConcept C2776401178 @default.
- W3184235979 hasConcept C33923547 @default.
- W3184235979 hasConcept C41008148 @default.
- W3184235979 hasConcept C41895202 @default.
- W3184235979 hasConcept C52622490 @default.
- W3184235979 hasConcept C55493867 @default.
- W3184235979 hasConcept C59822182 @default.
- W3184235979 hasConcept C63479239 @default.
- W3184235979 hasConcept C75294576 @default.
- W3184235979 hasConcept C81363708 @default.
- W3184235979 hasConcept C86803240 @default.
- W3184235979 hasConcept C9652623 @default.
- W3184235979 hasConceptScore W3184235979C104317684 @default.
- W3184235979 hasConceptScore W3184235979C115961682 @default.
- W3184235979 hasConceptScore W3184235979C138885662 @default.
- W3184235979 hasConceptScore W3184235979C153180895 @default.
- W3184235979 hasConceptScore W3184235979C154945302 @default.
- W3184235979 hasConceptScore W3184235979C202444582 @default.
- W3184235979 hasConceptScore W3184235979C22508944 @default.
- W3184235979 hasConceptScore W3184235979C2776401178 @default.
- W3184235979 hasConceptScore W3184235979C33923547 @default.
- W3184235979 hasConceptScore W3184235979C41008148 @default.
- W3184235979 hasConceptScore W3184235979C41895202 @default.
- W3184235979 hasConceptScore W3184235979C52622490 @default.
- W3184235979 hasConceptScore W3184235979C55493867 @default.
- W3184235979 hasConceptScore W3184235979C59822182 @default.
- W3184235979 hasConceptScore W3184235979C63479239 @default.
- W3184235979 hasConceptScore W3184235979C75294576 @default.
- W3184235979 hasConceptScore W3184235979C81363708 @default.
- W3184235979 hasConceptScore W3184235979C86803240 @default.
- W3184235979 hasConceptScore W3184235979C9652623 @default.