Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184253453> ?p ?o ?g. }
- W3184253453 abstract "Statistical analysis of networks has grown rapidly over the last few years with increasing number of applications. Graph-valued data carries additional information of dependencies which opens the possibility of modeling highly complex objects in vast number of fields such as biology (e.g. brain networks , fungi networks, genes co-expression), chemistry (e.g. molecules fingerprints), psychology (e.g. social networks) and many others (e.g. citation networks, word co-occurrences, financial systems, anomaly detection). While the inclusion of graph structure in the analysis can further help inference, simple statistical tasks in a network is very complex. For instance, the assumption of exchangeability of the nodes or the edges is quite strong, and it brings issues such as sparsity, size bias and poor characterization of the generative process of the data. Solutions to these issues include adding specific constraints and assumptions on the data generation process. In this work, we approach this problem by assuming graphs are globally sparse but locally dense, which allows exchangeability assumption to hold in local regions of the graph. We consider problems with two types of locality structure: block structure (also framed as multiple graphs or population of networks) and unstructured sparsity which can be seen as missing data. For the former, we developed a hypothesis testing framework for weighted aligned graphs; and a spectral clustering method for community detection on population of non-aligned networks. For the latter, we derive an efficient spectral clustering approach to learn the parameters of the zero inflated stochastic blockmodel. Overall, we found that incorporating multiple local dense structures leads to a more precise and powerful local and global inference. This result indicates that this general modeling scheme allows for exchangeability assumption on the edges to hold while generating more realistic graphs. We give theoretical conditions for our proposed algorithms, and we evaluate them on synthetic and real-world datasets, we show our models are able to outperform the baselines on a number of settings." @default.
- W3184253453 created "2021-08-02" @default.
- W3184253453 creator A5044961902 @default.
- W3184253453 date "2019-12-06" @default.
- W3184253453 modified "2023-09-27" @default.
- W3184253453 title "Hypothesis testing and community detection on networks with missingness and block structure" @default.
- W3184253453 cites W1486300442 @default.
- W3184253453 cites W1694128711 @default.
- W3184253453 cites W1880262756 @default.
- W3184253453 cites W1965403772 @default.
- W3184253453 cites W1972284617 @default.
- W3184253453 cites W1988074911 @default.
- W3184253453 cites W1990295095 @default.
- W3184253453 cites W1998724781 @default.
- W3184253453 cites W1998819761 @default.
- W3184253453 cites W2023246751 @default.
- W3184253453 cites W2059448777 @default.
- W3184253453 cites W2074617510 @default.
- W3184253453 cites W2079656678 @default.
- W3184253453 cites W2080873675 @default.
- W3184253453 cites W2091075671 @default.
- W3184253453 cites W2099878672 @default.
- W3184253453 cites W2101135654 @default.
- W3184253453 cites W2107107106 @default.
- W3184253453 cites W2111547480 @default.
- W3184253453 cites W2122759946 @default.
- W3184253453 cites W2132914434 @default.
- W3184253453 cites W2583143836 @default.
- W3184253453 cites W2757220467 @default.
- W3184253453 cites W2758203196 @default.
- W3184253453 cites W2805177834 @default.
- W3184253453 cites W2952465358 @default.
- W3184253453 cites W2962756421 @default.
- W3184253453 cites W2963222969 @default.
- W3184253453 cites W2963378502 @default.
- W3184253453 cites W2963518062 @default.
- W3184253453 cites W2963562062 @default.
- W3184253453 cites W2963730104 @default.
- W3184253453 cites W2963806077 @default.
- W3184253453 cites W2963879621 @default.
- W3184253453 cites W2963992008 @default.
- W3184253453 cites W2964146010 @default.
- W3184253453 cites W3100144903 @default.
- W3184253453 cites W3103168877 @default.
- W3184253453 cites W3104329805 @default.
- W3184253453 doi "https://doi.org/10.25394/pgs.11324075.v1" @default.
- W3184253453 hasPublicationYear "2019" @default.
- W3184253453 type Work @default.
- W3184253453 sameAs 3184253453 @default.
- W3184253453 citedByCount "0" @default.
- W3184253453 crossrefType "dissertation" @default.
- W3184253453 hasAuthorship W3184253453A5044961902 @default.
- W3184253453 hasConcept C105611402 @default.
- W3184253453 hasConcept C105795698 @default.
- W3184253453 hasConcept C119857082 @default.
- W3184253453 hasConcept C124101348 @default.
- W3184253453 hasConcept C132525143 @default.
- W3184253453 hasConcept C133079900 @default.
- W3184253453 hasConcept C134261354 @default.
- W3184253453 hasConcept C138885662 @default.
- W3184253453 hasConcept C144024400 @default.
- W3184253453 hasConcept C149923435 @default.
- W3184253453 hasConcept C154945302 @default.
- W3184253453 hasConcept C2776214188 @default.
- W3184253453 hasConcept C2779808786 @default.
- W3184253453 hasConcept C2779982251 @default.
- W3184253453 hasConcept C2908647359 @default.
- W3184253453 hasConcept C33923547 @default.
- W3184253453 hasConcept C41008148 @default.
- W3184253453 hasConcept C41895202 @default.
- W3184253453 hasConcept C73555534 @default.
- W3184253453 hasConcept C739882 @default.
- W3184253453 hasConcept C80444323 @default.
- W3184253453 hasConcept C9357733 @default.
- W3184253453 hasConceptScore W3184253453C105611402 @default.
- W3184253453 hasConceptScore W3184253453C105795698 @default.
- W3184253453 hasConceptScore W3184253453C119857082 @default.
- W3184253453 hasConceptScore W3184253453C124101348 @default.
- W3184253453 hasConceptScore W3184253453C132525143 @default.
- W3184253453 hasConceptScore W3184253453C133079900 @default.
- W3184253453 hasConceptScore W3184253453C134261354 @default.
- W3184253453 hasConceptScore W3184253453C138885662 @default.
- W3184253453 hasConceptScore W3184253453C144024400 @default.
- W3184253453 hasConceptScore W3184253453C149923435 @default.
- W3184253453 hasConceptScore W3184253453C154945302 @default.
- W3184253453 hasConceptScore W3184253453C2776214188 @default.
- W3184253453 hasConceptScore W3184253453C2779808786 @default.
- W3184253453 hasConceptScore W3184253453C2779982251 @default.
- W3184253453 hasConceptScore W3184253453C2908647359 @default.
- W3184253453 hasConceptScore W3184253453C33923547 @default.
- W3184253453 hasConceptScore W3184253453C41008148 @default.
- W3184253453 hasConceptScore W3184253453C41895202 @default.
- W3184253453 hasConceptScore W3184253453C73555534 @default.
- W3184253453 hasConceptScore W3184253453C739882 @default.
- W3184253453 hasConceptScore W3184253453C80444323 @default.
- W3184253453 hasConceptScore W3184253453C9357733 @default.
- W3184253453 hasLocation W31842534531 @default.
- W3184253453 hasOpenAccess W3184253453 @default.
- W3184253453 hasPrimaryLocation W31842534531 @default.
- W3184253453 hasRelatedWork W1495236997 @default.