Matches in SemOpenAlex for { <https://semopenalex.org/work/W3184267170> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3184267170 endingPage "1595" @default.
- W3184267170 startingPage "1581" @default.
- W3184267170 abstract "With the rapid development of artificial intelligence (AI) in recent years, fault diagnostics for industrial applications have leaped toward partially or fully automatic provided by the capability of analyzing massive condition monitoring data from sensors and actuators. Generally, AI-based fault diagnostics can achieve high accuracy when failure types appear in training dataset and testing dataset are the same. These diagnostic methods could be invalidated for applications dealing with unprecedented faults because the pretrained classifier for diagnostics tends to misclassify the novel instances into existing known classes. In order to address these limitations of conventional diagnostic approaches, we propose a unified diagnostics framework that can achieve novel fault detection and known fault classification tasks together. Through jointly training a variational autoencoder and a deep neural networks classifier, we convert the original entangled raw data into latent variables with Gaussian probabilistic distributions in the latent space and utilize the probabilistic latent variables to detect novel samples against known fault classes or classify them into one of the existing fault classes if they are not novel. The effectiveness of our proposed joint-training framework is validated through experimental studies on two different bearing datasets. Compared with the state-of-the-art methods in the literature, our unified framework is able to not only accurately detect the novel fault classes but also achieve high classification accuracy of known fault classes." @default.
- W3184267170 created "2021-08-02" @default.
- W3184267170 creator A5013903503 @default.
- W3184267170 creator A5050575763 @default.
- W3184267170 date "2021-12-01" @default.
- W3184267170 modified "2023-10-10" @default.
- W3184267170 title "Deep Variational Autoencoder Classifier for Intelligent Fault Diagnosis Adaptive to Unseen Fault Categories" @default.
- W3184267170 cites W2115627867 @default.
- W3184267170 cites W2184192902 @default.
- W3184267170 cites W2219903032 @default.
- W3184267170 cites W2317595875 @default.
- W3184267170 cites W2586262374 @default.
- W3184267170 cites W2591055632 @default.
- W3184267170 cites W2621253819 @default.
- W3184267170 cites W2744604411 @default.
- W3184267170 cites W2747276445 @default.
- W3184267170 cites W2765284480 @default.
- W3184267170 cites W2772511931 @default.
- W3184267170 cites W2791694051 @default.
- W3184267170 cites W2800395558 @default.
- W3184267170 cites W2810292802 @default.
- W3184267170 cites W2887782657 @default.
- W3184267170 cites W2891948273 @default.
- W3184267170 cites W2906110081 @default.
- W3184267170 cites W2915337192 @default.
- W3184267170 cites W2919115771 @default.
- W3184267170 cites W2970904710 @default.
- W3184267170 cites W2973942754 @default.
- W3184267170 cites W3137617768 @default.
- W3184267170 cites W4256613398 @default.
- W3184267170 doi "https://doi.org/10.1109/tr.2021.3090310" @default.
- W3184267170 hasPublicationYear "2021" @default.
- W3184267170 type Work @default.
- W3184267170 sameAs 3184267170 @default.
- W3184267170 citedByCount "25" @default.
- W3184267170 countsByYear W31842671702022 @default.
- W3184267170 countsByYear W31842671702023 @default.
- W3184267170 crossrefType "journal-article" @default.
- W3184267170 hasAuthorship W3184267170A5013903503 @default.
- W3184267170 hasAuthorship W3184267170A5050575763 @default.
- W3184267170 hasConcept C101738243 @default.
- W3184267170 hasConcept C119857082 @default.
- W3184267170 hasConcept C12267149 @default.
- W3184267170 hasConcept C124101348 @default.
- W3184267170 hasConcept C127313418 @default.
- W3184267170 hasConcept C152745839 @default.
- W3184267170 hasConcept C153180895 @default.
- W3184267170 hasConcept C154945302 @default.
- W3184267170 hasConcept C165205528 @default.
- W3184267170 hasConcept C172707124 @default.
- W3184267170 hasConcept C175551986 @default.
- W3184267170 hasConcept C189119545 @default.
- W3184267170 hasConcept C41008148 @default.
- W3184267170 hasConcept C49937458 @default.
- W3184267170 hasConcept C50644808 @default.
- W3184267170 hasConcept C52001869 @default.
- W3184267170 hasConcept C95623464 @default.
- W3184267170 hasConceptScore W3184267170C101738243 @default.
- W3184267170 hasConceptScore W3184267170C119857082 @default.
- W3184267170 hasConceptScore W3184267170C12267149 @default.
- W3184267170 hasConceptScore W3184267170C124101348 @default.
- W3184267170 hasConceptScore W3184267170C127313418 @default.
- W3184267170 hasConceptScore W3184267170C152745839 @default.
- W3184267170 hasConceptScore W3184267170C153180895 @default.
- W3184267170 hasConceptScore W3184267170C154945302 @default.
- W3184267170 hasConceptScore W3184267170C165205528 @default.
- W3184267170 hasConceptScore W3184267170C172707124 @default.
- W3184267170 hasConceptScore W3184267170C175551986 @default.
- W3184267170 hasConceptScore W3184267170C189119545 @default.
- W3184267170 hasConceptScore W3184267170C41008148 @default.
- W3184267170 hasConceptScore W3184267170C49937458 @default.
- W3184267170 hasConceptScore W3184267170C50644808 @default.
- W3184267170 hasConceptScore W3184267170C52001869 @default.
- W3184267170 hasConceptScore W3184267170C95623464 @default.
- W3184267170 hasFunder F4320335353 @default.
- W3184267170 hasIssue "4" @default.
- W3184267170 hasLocation W31842671701 @default.
- W3184267170 hasOpenAccess W3184267170 @default.
- W3184267170 hasPrimaryLocation W31842671701 @default.
- W3184267170 hasRelatedWork W1529110449 @default.
- W3184267170 hasRelatedWork W2010693867 @default.
- W3184267170 hasRelatedWork W2061054189 @default.
- W3184267170 hasRelatedWork W2149078746 @default.
- W3184267170 hasRelatedWork W2165541001 @default.
- W3184267170 hasRelatedWork W2355754418 @default.
- W3184267170 hasRelatedWork W2536747761 @default.
- W3184267170 hasRelatedWork W2991907765 @default.
- W3184267170 hasRelatedWork W3184267170 @default.
- W3184267170 hasRelatedWork W4221015625 @default.
- W3184267170 hasVolume "70" @default.
- W3184267170 isParatext "false" @default.
- W3184267170 isRetracted "false" @default.
- W3184267170 magId "3184267170" @default.
- W3184267170 workType "article" @default.